已知橢圓C:=1(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓C于E、G兩點(diǎn),且△EGF2的周長(zhǎng)為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足+=t (O為坐標(biāo)原點(diǎn)),當(dāng)|-|<時(shí),求實(shí)數(shù)t的取值范圍.
(1)+y2=1.(2)∪
【解析】(1)由題意知橢圓的離心率e==,∴e2===,
即a2=2b2.
又△EGF2的周長(zhǎng)為4,即4a=4,∴a2=2,b2=1.
∴橢圓C的方程為+y2=1.
(2)由題意知直線AB的斜率存在,即t≠0.
設(shè)直線AB的方程為y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由,
得(1+2k2)x2-8k2x+8k2-2=0.
由Δ=64k4-4(2k2+1)(8k2-2)>0,得k2<.x1+x2=,x1x2=,
∵+=t,
∴(x1+x2,y1+y2)=t(x,y),x==,y==[k(x1+x2)-4k]=.
∵點(diǎn)P在橢圓C上,
∴+2=2,
∴16k2=t2(1+2k2).
∵|-|<,∴|x1-x2|<,
∴(1+k2)[(x1+x2)2-4x1x2]<,
∴(1+k2) <,
∴(4k2-1)(14k2+13)>0,
∴k2>.∴<k2<.
∵16k2=t2(1+2k2),∴t2==8-,
又<1+2k2<2,∴<t2=8-<4,
∴-2<t<-或<t<2,
∴實(shí)數(shù)t的取值范圍為∪
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=sin (2x+φ),其中φ為實(shí)數(shù),若f(x)≤ 對(duì)x∈R恒成立,且<f(π),則下列結(jié)論正確的是( ).
A.=-1
B.f>f
C.f(x)是奇函數(shù)
D.f(x)的單調(diào)遞增區(qū)間是 (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:填空題
我們把形如y= (a>0,b>0)的函數(shù)因其圖象類似于漢字中的“囧”字,故生動(dòng)地稱為“囧函數(shù)”,若當(dāng)a=1,b=1時(shí)的“囧函數(shù)”與函數(shù)y=lg|x|的交點(diǎn)個(gè)數(shù)為n,則n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=若f(a)+f(-1)=2,則a等于( ).
A.-3 B.±3 C.-1 D.±1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)7-2隨機(jī)變量及其分布練習(xí)卷(解析版) 題型:選擇題
甲射擊命中目標(biāo)的概率是,乙命中目標(biāo)的概率是,丙命中目標(biāo)的概率是.現(xiàn)在三人同時(shí)射擊目標(biāo),則目標(biāo)被擊中的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:選擇題
已知直線l交橢圓4x2+5y2=80于M,N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是( ).
A.6x-5y-28=0 B.6x+5y-28=0
C.5x+6y-28=0 D.5x-6y-28=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線與圓練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點(diǎn)等練習(xí)卷(解析版) 題型:解答題
如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分別是棱AD,AA1,AB的中點(diǎn).
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=coscos-sin xcos x+
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com