已知定義在實數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達(dá)式;
(2)若a,b,c滿足b2-3ac<0,求證:函數(shù)f(x)是單調(diào)函數(shù).
分析:(1)因為函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),則導(dǎo)數(shù)在區(qū)間(-∞,-1)和(3,+∞)上都大于零,在區(qū)間(-1,3)上小于零,可知,-1和3對應(yīng)的導(dǎo)數(shù)值為0,再由f′(0)=-18,可求得導(dǎo)函數(shù),再利用導(dǎo)函數(shù)與原函數(shù)間的關(guān)系,表示出原函數(shù),再由f(0)=-7求解.
(2)若函數(shù)f(x)是單調(diào)函數(shù),則導(dǎo)函數(shù)對應(yīng)的方程無根即可,所以下面就轉(zhuǎn)化為導(dǎo)數(shù)是恒大于零還是恒小于零問題求解.
解答:解(1)f′(x)=3ax
2+2bx+c.
由f'(0)=-18得c=-18,即f′(x)=3ax
2+2bx-18.(3分)
又由于f(x)在區(qū)間(-∞,-1)和(3,+∞)上是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),
所以-1和3必是f′(x)=0的兩個根.
從而
解得(5分)
又根據(jù)f(0)=-7,所以f(x)=2x
3-6x
2-18x-7(7分)
(2)f′(x)=3ax
2+2bx+c由條件b
2-3ac<0可知a≠0,c≠0.(9分)
因為f'(x)為二次三項式,
并且△=(2b)
2-4(3ac)=4(b
2-3ac)<0,
所以,當(dāng)a>0時,f'(x)>0恒成立,此時函數(shù)f(x)是單調(diào)遞增函數(shù);
當(dāng)a<0時,f'(x)<0恒成立,此時函數(shù)f(x)是單調(diào)遞減函數(shù).
因此,對任意給定的實數(shù)a,函數(shù)f(x)總是單調(diào)函數(shù).(12分)
點評:本題主要考查函數(shù)的單調(diào)性與導(dǎo)數(shù)正負(fù)間的關(guān)系,當(dāng)導(dǎo)數(shù)大于零時,函數(shù)為增函數(shù),當(dāng)導(dǎo)數(shù)小于零時,函數(shù)為減函數(shù).