【題目】關(guān)于函數(shù),給出以下四個(gè)命題,其中真命題的序號(hào)是_______.

時(shí),單調(diào)遞減且沒有最值;

②方程一定有解;

③如果方程有解,則解的個(gè)數(shù)一定是偶數(shù);

是偶函數(shù)且有最小值.

【答案】②④

【解析】

①將函數(shù)表示為分段函數(shù),結(jié)合分式型函數(shù)的單調(diào)性進(jìn)行判斷;②由函數(shù)是偶函數(shù),在時(shí),判定函數(shù)與函數(shù)時(shí)有唯一交點(diǎn),同理得出,當(dāng)時(shí),函數(shù)與函數(shù)時(shí)有交點(diǎn),從而可得方程有解;③求方程的解,即可判斷出命題③的正誤;④利用偶函數(shù)的定義判定函數(shù)為偶函數(shù),再利用絕對(duì)值的性質(zhì)得出,即可判斷出命題④的正誤.

對(duì)于命題①,當(dāng)時(shí),.

當(dāng)時(shí),,則函數(shù)上單調(diào)遞增,此時(shí),,當(dāng)時(shí),

當(dāng)時(shí),,則函數(shù)上單調(diào)遞減,

所以,當(dāng)時(shí),函數(shù)不單調(diào)且沒有最值,命題①錯(cuò)誤;

對(duì)于命題②,當(dāng)時(shí),,當(dāng)時(shí),,

當(dāng)時(shí),構(gòu)造函數(shù),

則函數(shù)上單調(diào)遞增,

當(dāng)時(shí),,當(dāng)時(shí),,

所以,函數(shù)上有且只有一個(gè)零點(diǎn),

即當(dāng)時(shí),方程上有解.

函數(shù)的定義域?yàn)?/span>,關(guān)于原點(diǎn)對(duì)稱,,則函數(shù)為偶函數(shù),

同理可知,當(dāng)時(shí),方程上有解.

所以,命題②正確;

對(duì)于命題③,當(dāng)時(shí),令,解得,則命題③錯(cuò)誤;

對(duì)于命題④,由②可知,函數(shù)是偶函數(shù),由絕對(duì)值的性質(zhì)可知,則函數(shù)為偶函數(shù)且最小值為,命題④正確.

因此,正確命題的序號(hào)為②④.

故答案為:②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

2)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,證明:

(Ⅰ);

(Ⅱ)對(duì)一切成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在給定的區(qū)間上滿足恒成立,則稱這兩個(gè)函數(shù)在該區(qū)間上和諧。

1)若函數(shù)R上和諧,求實(shí)數(shù)a的取值范圍;

2)若函數(shù)上和諧,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合,集合

1)用列舉法表示集合C;

2)設(shè)集合C的含n個(gè)元素所有子集為,記有限集合M的所有元素和為,求的值;

3)已知集合PQ是集合C的兩個(gè)不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對(duì)的個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)(

A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2,縱坐標(biāo)不變

C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

代入直線得連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), , ,∴ ,得,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為,利用弦長(zhǎng)公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點(diǎn),上頂點(diǎn),直線的斜率,

,

因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

由點(diǎn)在直線上,∴,且,

解得, ,

∴橢圓的方程為.

(2)設(shè), ,

代入消去并整理得 ,

, ,

∵四邊形為平行四邊形,∴

,將點(diǎn)坐標(biāo)代入橢圓方程得

點(diǎn)到直線的距離為,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù), .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn), ,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距與短軸長(zhǎng)相等,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F傾斜角為的直線交橢圓MA、B兩點(diǎn).

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過(guò)右焦點(diǎn)F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案