已知集合A={x|log2(4x)·≥2},求函數(shù)y=42x+1+4x(x∈A)的值域.

答案:
解析:

  [解]由題意知(2+log2x)(1-log2x)≥2,  整理得 +log2x≤0,

  [解]由題意知(2+log2x)(1-log2x)≥2,  整理得+log2x≤0,

  解不等式得 。1≤log2x≤0,所以≤x≤1

  令4x=u,則u∈[2,4]

  而函數(shù)y=42x+1+4x可化為  y=4u2+u,u∈[2,4].

  又函數(shù)y=4u2+u在區(qū)間[2,4]上單調(diào)遞增

  故y≥4×22+2=18  y≤4×42+4=68

  函數(shù)y=42x+1+4x的值域為[18,68].


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求實數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標方程;(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,
5
)

求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a
2
,點E,F(xiàn)分別為線段AB,CD的中點,則EF=
a
2
a
2

(2)(選修4-4,坐標系與參數(shù)方程)在極坐標系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標為
2
,
4
2
,
4

(3)(選修4-1,不等式選講)已知函數(shù)f(x)=|x-a|.若不等式f(x)≤3的解集為{x|-1≤x≤5},則實數(shù)a的值為
a=2
a=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標與參數(shù)方程)
在平面直角坐標系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關(guān)于x的不等式|x-a|+1-x>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案