【題目】已知函數(shù)f(x)= (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時,方程f(x)﹣k=0只有1個根
(3)設(shè)函數(shù)g(x)=x2﹣2ax+a,若對于任意x1∈R,總存在x2∈[﹣1,0],使得g(x2)≤f(x1),求a的取值范圍.

【答案】
(1)解:因?yàn)楹瘮?shù)f(1)=

所以m=2+2n,f(x)= ,

又f(x)在x=1處取得極值,

f =

f ,n=1,則m=4,

經(jīng)檢驗(yàn)滿足題意,

所以 ;


(2)解:由f(x)﹣k=0,得k=f(x),

由(1)得f ,

令f′(x)=0,得x=±1.

當(dāng)x變化時,f′(x),f(x)的變化情況如下表:

x

(﹣∞,﹣1)

﹣1

(﹣1,1)

1

(1,+∞)

f'(x)

0

+

0

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

所以f(x)在x=﹣1處取得極小值﹣2,在x=1處取得極大值2

如圖

所以k=±2或0時,方程有一個根


(3)解:對于任意x1∈R,總存在x2∈[﹣1,0],使得g(x2)≤f(x1),

只需g(x2min≤f(x1min,

即當(dāng)x∈[﹣1,0]時,x2﹣2ax+a≤﹣2恒成立

只需

解得a≤﹣2

a的取值范圍為a≤﹣2


【解析】(1)函數(shù)f(1)= .所以m=2+2n,f(x)= ,又f(x)在x=1處取得極值,f ,n=1,則m=4(2)由f(x)﹣k=0,得k=f(x),由(1)得f ,令f′(x)=0,得x=±1.求出單調(diào)區(qū)間,根據(jù)圖象即可求解.(3)對于任意x1∈R,總存在x2∈[﹣1,0],使得g(x2)≤f(x1),只需g(x2min≤f(x1min,即當(dāng)x∈[﹣1,0]時,x2﹣2ax+a≤﹣2恒成立,只需 ,解得a.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的等邊所在的平面垂直于矩形所在的平面,的中點(diǎn).

1)證明:;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):

甲:37,21,3120,29,19,32,23,25,33

乙:10,30,47,2746,1426,10,4446

1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;

2)設(shè)抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣0.5x+1,則不等式f(2x﹣3)<0.5的解集為(
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點(diǎn);則下列結(jié)論錯誤的是( )

A. B. 平面

C. 三棱錐的體積為定值 D. 的面積與的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.命題“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命題“若x=3,則x2﹣2x﹣3=0”的否命題是:若x≠3,則x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分條件
D.命題“cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(Ⅰ)某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為 、 ,比較 、 的大。ㄖ苯訉懡Y(jié)果,不必寫過程);
(Ⅱ)設(shè)集合 ,B={x|m+x2≤1,m<1},命題p:x∈A;命題q:x∈B,若p是q的必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保障高考的公平性,高考時每個考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1 km內(nèi)不能收到手機(jī)信號.檢查員抽查青島市一考點(diǎn),在考點(diǎn)正西約 km有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以12 km/h的速度沿公路行駛,最長需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點(diǎn)才算合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子商務(wù)公司對10 000名網(wǎng)絡(luò)購物者2017年度的消費(fèi)情況進(jìn)行統(tǒng)計,發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為_______.

查看答案和解析>>

同步練習(xí)冊答案