將A、B、C、D、E五種不同的文件放入編號依次為1,2,3,4,5,6的六個(gè)抽屜內(nèi),每個(gè)抽屜至多放一種文件,若文件A、B必須放入相鄰的抽屜內(nèi),文件C、D也必須放入相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有(    )種.

A、24       B、48       C、96    D、192

 

【答案】

C

【解析】解:∵文件A、B必須放入相鄰的抽屜內(nèi),文件C、D也必須放相鄰的抽屜內(nèi)

∴A,B和C,D分別看成一個(gè)元素,相應(yīng)的抽屜看成4個(gè),

則有3個(gè)元素在四個(gè)位置排列,共有種結(jié)果,

組合在一起的元素還有一個(gè)排列,共有=96種結(jié)果,

故答案為:96

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、將A、B、C、D、E排成一列,要求A、B、C在排列中順序?yàn)椤癆、B、C”或“C、B、A”(可以不相鄰),這樣的排列數(shù)有多少種( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、將A、B、C、D、E、F六位同學(xué)排成一排,要求A、B、C、D在排列中順序?yàn)椤癆、B、C、D”或“D、C、B、A”(可以不相鄰),則排列的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•海淀區(qū)一模)將A、B、C、D、E、F、G七個(gè)不同的電子元件在線路上排成一排,組成一個(gè)電路,如果元件A及B均不能排在兩端,那么,這七個(gè)電子元件組成不同電路的種數(shù)是
2400
2400
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將A,B,C,D,E,F(xiàn)六個(gè)字母排成一排,且A,B均在C的同側(cè),則不同的排法種數(shù)為(  )
A、192B、240C、384D、480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將A,B,C,D,E五種不同的文件隨機(jī)地放入編號依次為1,2,3,4,5,6,7的七個(gè)抽屜內(nèi),每個(gè)抽屈至多放一種文件,則文件A,B被放在相鄰的抽屜內(nèi)且文件C,D被放在不相鄰的抽屜內(nèi)的概率是
 

查看答案和解析>>

同步練習(xí)冊答案