(本小題滿分12分)求一條漸近線方程是,且過點的雙曲線的標準方程,并求此雙曲線的離心率.
解:由題意可設雙曲線的方程為,                ……3分
又點在雙曲線上,則,得,  ……6分
即雙曲線的方程為,標準方程為,     ……8分
由此可知,,                 ……10分
離心率.                                      ……12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,設A為△ABC所在平面外一點,HD=2CH,G為BH的中點
(1)試用
AB
AC
,
AD
表示
AG

(2)若∠BAC=60°,∠CAD=∠DAB=45°,|
AB
|=|
AC
|=2,|
AD
|=3,求|
AG
|

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

互相平行的三條直線,最多可以確定的平面?zhèn)數(shù)為(    )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

以直角坐標系的原點為極點,軸的正半軸為極軸,已知點的直角坐標為,點的極坐標為,若直線過點,且傾斜角為,圓為 圓心、為半徑。
(I) 寫出直線的參數(shù)方程和圓的極坐標方程;
(Ⅱ)試判定直線和圓的位置關系。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知橢圓的中心在坐標原點,焦點在軸上,它的一個頂點為,且離心率等于,過點的直線與橢圓相交于不同兩點,點在線段上。

(1)求橢圓的標準方程;
(2)設,若直線軸不重合,
試求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓),其左、右焦點分別為、,且、成等比數(shù)列.
(1)求的值.
(2)若橢圓的上頂點、右頂點分別為,求證:
(3)若為橢圓上的任意一點,是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓交于A、B兩點,過原點與線段AB中點連線的斜率為,則的值等于(     )  
A.          B.        C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率是(    )
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線與雙曲線有兩個不同的公共點,則實數(shù)的取值范圍是           

查看答案和解析>>

同步練習冊答案