【題目】已知橢圓C:(a>b>0)的上、下、左、右四個(gè)頂點(diǎn)分別為A,B,C,D,x軸正半軸上的點(diǎn)P滿足|PA|=|PD|=2,|PC|=4。
(I)求橢圓C的標(biāo)準(zhǔn)方程以及點(diǎn)P的坐標(biāo);
(II)過點(diǎn)P作直線l交橢圓C于點(diǎn)M,N,是否存在這樣的直線l使得△MNA和△MND的面積相等?若存在,請(qǐng)求出直線l的方程,若不存在,請(qǐng)說明理由;
(III)在(II)的條件下,求當(dāng)直線l的傾斜角為鈍角時(shí)△MND的面積。
【答案】(1),P點(diǎn)坐標(biāo)為(1,0).(2)y=(x-1)或y=(x-1).(3)
【解析】
試題(1)設(shè)點(diǎn)P的坐標(biāo),表示條件,解方程組可得a=3,x0=1,b=.(2)先將條件轉(zhuǎn)化為點(diǎn)A,D到直線l的距離相等. 再根據(jù)點(diǎn)到直線距離公式解直線斜率,即得直線l的方程,(3)將直線方程代人橢圓方程,利用韋達(dá)定理以及弦長公式求底邊邊長,再根據(jù)點(diǎn)到直線距離公式求高,最后代人面積公式求面積.
試題解析:解:(I)設(shè)點(diǎn)P的坐標(biāo)為(x0,0)(x0>0),易知2a=2+4,a=3,
x0=4-a=1,b=.
因此橢圓標(biāo)準(zhǔn)方程為,P點(diǎn)坐標(biāo)為(1,0).
(II)設(shè)直線l:y=k(x-1).
由△MNA與△MND的面積相等,則點(diǎn)A,D到直線l的距離相等.
所以,解得k=或k=.
所以直線l的方程為y=(x-1)或y=(x-1).
(Ⅲ)若直線l傾斜角為鈍角,即k=,此時(shí)方程為y=(x-1).
與橢圓方程聯(lián)立消x得。
設(shè)M,N坐標(biāo)分別為(x1,y1),(x2,y2),
則有y1+y2=,y1y2=.
所以△MND的面積
S=|PD|·|y1-y2|=×2×=。
故所求△MND的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1,F2分別為雙曲線的左、右焦點(diǎn),A1,A2分別為這個(gè)雙曲線的左、右頂點(diǎn),P為雙曲線右支上的任意一點(diǎn).求證:以A1A2為直徑的圓既與以PF2為直徑的圓外切,又與以PF1為直徑的圓內(nèi)切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是 . (只填寫序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系,x軸在地平面上,y軸垂直于地平面,單位長度為1 km,某炮位于原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).則炮的最大射程為( )
A. 20 km B. 10 km
C. 5 km D. 15 km
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分別是邊AD、CD上的點(diǎn),且滿足 =λ,其中λ∈[0,1],則 的取值范圍是( )
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= (x>0),計(jì)算觀察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實(shí)得到當(dāng)n∈N*時(shí),fn(1)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以O(shè)為極點(diǎn)x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)Q是曲線C上的動(dòng)點(diǎn),求點(diǎn)Q到直線l的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com