【題目】如圖所示甲,在四邊形ABCD中,,是邊長為8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如圖所示乙所示,點OM,N分別為棱ACPA,AD的中點.

求證:平面PON;

求三棱錐的體積.

【答案】(1)見解析;(2)4

【解析】

1)根據平面與平面垂直,判斷出,結合勾股定理及中位線,即可判斷出,進而判斷出平面PON。

2)求得,結合點M到平面ANO的距離、的值,即可。

如圖所示,為正三角形,OAC的中點,

,

平面平面ACD,平面平面

平面ACD,平面ACD,

,,,

,即

,N分別為棱AC,AD的中點,

,

,

平面PON;

解:由,,,可得,

O、N分別是AC、AD的中點,

,

是邊長為8的等邊三角形,

,

PA的中點,

M到平面ANO的距離,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).

(1)求函數(shù)f(x)的極值;

(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調遞增,求實數(shù)a的取值范圍;

(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù):

(I)時,求的最小值;

(II)對于任意的都存在唯一的使得,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人作游戲,甲先在紙上任意寫下一個由L、R構成的長為的序列,然后乙將個質量互不相同的砝碼逐一放在天平上,每放一個砝碼(已放的砝碼不再拿下),乙都在紙上按順序寫一個字母:如果天平傾向左邊則寫L,否則寫R.當所有砝碼都放在天平上時,乙也寫下一個由L、R構成的長為的序列.規(guī)定:當乙寫的序列與甲寫的序列相同時乙勝,否則甲勝.試問:誰有必勝策略?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,,,EA的中點(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA;

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項能力(指標值滿分為5分,分值高者為優(yōu)),分別繪制了如圖所示的六維能力雷達圖,圖中點A表示甲的創(chuàng)造力指標值為4,點B表示乙的空間能力指標值為3,則下列敘述錯誤的是(

A.甲的六大能力中推理能力最差B.甲的創(chuàng)造力優(yōu)于觀察能力

C.乙的計算能力優(yōu)于甲的計算能力D.乙的六大能力整體水平低于甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)若方程有兩個實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A.自變量取值一定時,因變量的取值有一定隨機性的兩個變量之間的關系叫做相關關系

B.在線性回歸分析中,相關系數(shù)越大,變量間的相關性越強

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在回歸分析中,的模型比的模型擬合的效果好

查看答案和解析>>

同步練習冊答案