如圖,在棱長為1的正方體中.
(1)求異面直線與所成的角;
(2)求證平面⊥平面.
(1)(2)先證即可得證.
解析試題分析:
(1)如圖,∥,
則就是異面直線與所成的角.
連接,在中,,則,
因此異面直線與所成的角為.
(2) 由正方體的性質(zhì)可知 , 故,
又 正方形中,, ∴ ;
又 , ∴ 平面.
考點(diǎn):向量語言表述面面的垂直、平行關(guān)系;用空間向量求直線間的夾角、距離.
點(diǎn)評:本題考查的知識點(diǎn)是向量語言表述直線的垂直關(guān)系,用空間向量求直線間的夾角,其中解法一(幾
何法)的關(guān)鍵是熟練掌握空間線面關(guān)系的判定、性質(zhì)及相互轉(zhuǎn)換;解法二(向量法)的關(guān)鍵是建立恰當(dāng)?shù)?br />空間坐標(biāo)系,將空間線面關(guān)系問題轉(zhuǎn)化為向量夾角問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△中,,,,在三角形內(nèi)挖去一個半圓(圓心在邊上,半圓與、分別相切于點(diǎn)、,與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體。
(1)求該幾何體中間一個空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,,,, ,,和分別是和的中點(diǎn).
(1)求證: 底面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線與所成角的余弦值;
(Ⅲ)探究在上是否存在點(diǎn)Q,使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知圓錐的軸截面ABC是邊長為的正三角形,O是底面圓心.
(1)求圓錐的表面積;
(2)經(jīng)過圓錐的高的中點(diǎn)作平行于圓錐底面的截面,求截得的圓臺的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長是,側(cè)棱長是3,點(diǎn)E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題9分)如圖是一個空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,
(1)畫出這個幾何體的直觀圖(不用寫作圖步驟);
(2)請寫出這個幾何體的名稱,并指出它的高是多少;
(3)求出這個幾何體的表面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com