解答:解:(Ⅰ)∵
f(x)=x2-(3+m)x+3mlnx,m∈R,
∴f(x)的定義域?yàn)椋?,+∞),
f′(x)=x-(3+m)+=
=
.
①當(dāng)m≤0時(shí),
令f'(x)>0,解得x>3,所以函數(shù)f(x)在(3,+∞)上是增函數(shù);
②當(dāng)0<m<3時(shí),
令f'(x)>0,解得0<x<m或x>3,所以函數(shù)f(x)在(0,m)和(3,+∞)上是增函數(shù);
③當(dāng)m=3時(shí),
f′(x)=≥0在(0,+∞)上恒成立,所以函數(shù)f(x)在(0,+∞)是增函數(shù);
④當(dāng)m>3時(shí),
令f'(x)>0,解得0<x<3或x>m,所以函數(shù)f(x)在(0,3)和(m,+∞)上是增函數(shù).
綜上所述,
①當(dāng)m≤0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(3,+∞);
②當(dāng)0<m<3時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,m)和(3,+∞);
③當(dāng)m=3時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞);
④當(dāng)m>3時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,3)和(m,+∞).
(Ⅱ)因?yàn)楹瘮?shù)f(x)在點(diǎn)A(x
0,f(x
0))處的切線的斜率大于-3,
所以當(dāng)x
0∈(0,+∞)時(shí),
f′(x0)=x0-(3+m)+>-3恒成立.
即當(dāng)x
0∈(0,+∞)時(shí),
x02-mx0+3m>0恒成立.
方法1:
設(shè)h(x
0)=
x02-mx0+3m,函數(shù)h(x
0)的對稱軸方程為
x0=.
(。┊(dāng)m=0時(shí),h(x
0)=
x02>0在x
0∈(0,+∞)時(shí)恒成立.
(ⅱ) 當(dāng)
>0時(shí),即m>0時(shí),在x
0∈(0,+∞)時(shí),函數(shù)h(x
0)>0成立,則方程h(x
0)=0的判別式△=m
2-12m<0,解得0<m<12.
(ⅲ)當(dāng)
<0時(shí),即m<0時(shí),h(x
0)在(0,+∞)上為增函數(shù),h(x
0)的取值范圍是(3m,+∞),則在x
0∈(0,+∞)時(shí),函數(shù)h(x
0)>0不恒成立.
綜上所述,0≤m<12時(shí),在函數(shù)f(x)的圖象上任意一點(diǎn)A處的切線的斜率恒大于-3.
方法2:
由
x02-mx0+3m>0在x
0∈(0,+∞)時(shí)恒成立,得x
0∈(0,+∞)時(shí),
m(3-x0)>-x02.
(。┊(dāng)x
0=3時(shí),
m(3-x0)>-x02恒成立;
(ⅱ)當(dāng)0<x
0<3時(shí),上式等價(jià)于
m>,
h(x0)=,由于此時(shí)h(x
0)為減函數(shù),h(x
0)的取值范圍是(-∞,0),只需m≥0;
(ⅲ)當(dāng)x
0>3時(shí),
m(3-x0)>-x02上式等價(jià)于
m<,設(shè)
h(x0)=,則h(x
0)=
=
x0-3++6,當(dāng)x
0>3時(shí),h(x
0)≥12(當(dāng)且僅當(dāng)x
0=6時(shí)等號(hào)成立),則此時(shí)m<12.
所以在(0,+∞)上,當(dāng)0≤m<12時(shí),在函數(shù)f(x)的圖象上任意一點(diǎn)A處的切線的斜率恒大于-3.