過(guò)點(diǎn)P(0,1)向圓x2+y2-4x-6y+12=0引切線(xiàn),則切線(xiàn)長(zhǎng)為_(kāi)_____.
圓x2+y2-4x-6y+12=0 即 (x-2)2+(x-3)2=1,表示以C(2,3)為圓心,半徑R=1的圓.
PC=
(2-0)2+(3-1)2
=2
2
,故切線(xiàn)的長(zhǎng)為
PC2-R2
=
7
,
故答案為
7
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C的圓心在直線(xiàn)l:x-2y-1=0上,并且經(jīng)過(guò)原點(diǎn)和A(2,1),求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O:x2+y2=4和點(diǎn)M(1,a),
(1)若過(guò)點(diǎn)M有且只有一條直線(xiàn)與圓O相切,求實(shí)數(shù)a的值,并求出切線(xiàn)方程;
(2)若a=
2
,過(guò)點(diǎn)M的圓的兩條弦AC.BD互相垂直,求AC+BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)l與圓O:x2+y2=1在第一象限內(nèi)相切于點(diǎn)C,并且分別與x,y軸相交于A(yíng)、B兩點(diǎn),則|AB|的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線(xiàn)y=x+b與曲線(xiàn)x=
1-(y-1)2
恰有一個(gè)公共點(diǎn),則b的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P是直線(xiàn)l:x-y-2=0上的動(dòng)點(diǎn),點(diǎn)A,B分別是圓C1:(x+3)2+(y-1)2=4和圓C2:x2+(y-3)2=1上的兩個(gè)動(dòng)點(diǎn),則|PA|+|PB|的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)已知圓O:x2+y2=4和點(diǎn)M(1,a),若實(shí)數(shù)a>0且過(guò)點(diǎn)M有且只有一條直線(xiàn)與圓O相切,求實(shí)數(shù)a的值,并求出切線(xiàn)方程;
(Ⅱ)過(guò)點(diǎn)(
2
,0)引直線(xiàn)l與曲線(xiàn)y=
1-x2
相交于A(yíng),B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓x2+y2+2ax-2ay+2a2-4a=0的圓心為C,直線(xiàn)l:y=x+b,圓心C到坐標(biāo)原點(diǎn)O的距離不大于圓C半徑的2倍.
(1)若b=4,求直線(xiàn)l被C所截得弦長(zhǎng)的最大值;
(2)若直線(xiàn)l是圓心C下方的圓的切線(xiàn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線(xiàn)x+y+a=0與半圓y=-
1-x2
有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[1,
2
B.[1,
2
]
C.[-
2
,1]
D.(-
2
,1

查看答案和解析>>

同步練習(xí)冊(cè)答案