已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在(0,+∞)上單調(diào)遞減,且f(
1
2
)>0>f(-
3
),則方程f(x)=0的根的個數(shù)為(  )
A、0B、1C、2D、3
分析:利用函數(shù)為偶函數(shù)得f(-
3
)=f(
3
),又在(0,+∞)上單調(diào)遞減,所以函數(shù)f(x)在(
1
2
,
3
)上與x軸有一個交點,在利用偶函數(shù)圖象的對稱性可得必在(-
3
,-
1
2
)上也有一個交點,即可得答案
解答:解:由于函數(shù)是偶函數(shù),且在(0,+∞)上單調(diào)遞減,
因此在(-∞,0)上單調(diào)遞增,
又因為f(
1
2
)>0>f(-
3
)=f(
3
),
所以函數(shù)f(x)在(
1
2
,
3
)上與x軸有一個交點,
必在(-
3
,-
1
2
)上也有一個交點,
故方程f(x)=0的根的個數(shù)為2.
故選:C
點評:本題主考查抽象函數(shù)的單調(diào)性、對稱性以及奇偶性,偶函數(shù)在關(guān)于原點對稱的區(qū)間上單調(diào)性相反,而奇函數(shù)在關(guān)于原點對稱的區(qū)間上單調(diào)性相同.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊答案