【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),且,證明: .
【答案】(1) ;(2)證明見(jiàn)解析.
【解析】試題分析:(1)由條件可知恒成立,通過(guò)參變分離的方法得到恒成立,即 轉(zhuǎn)化為利用導(dǎo)數(shù)求函數(shù)的最大值,即求的取值范圍;(2)根據(jù)條件可知, 和 ,經(jīng)過(guò)變形整理為 ,經(jīng)過(guò)換元,可將問(wèn)題轉(zhuǎn)化為證明 ,利用導(dǎo)數(shù)求函數(shù)的最小值,即可證明.
試題解析:(1)由函數(shù)在上是減函數(shù),知恒成立,
.
由恒成立可知恒成立,則,
設(shè),則,
由, 知,
函數(shù)在上遞增,在上遞減,∴,
∴.
(2)由(1)知.
由函數(shù)在上存在兩個(gè)極值點(diǎn),且,知,
則且,
聯(lián)立得,即,
設(shè),則,
要證,
只需證,只需證,只需證.
構(gòu)造函數(shù),則.
故在上遞增, ,即,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線與曲線的極坐標(biāo)方程;
(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱(chēng)為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間(10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 上的點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離的最大值是最小值的倍,且點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)任作一條直線,與橢圓交于不同于點(diǎn)的、兩點(diǎn),與直線交于點(diǎn),記直線、、的斜率分別為、、.試探究與的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年12月,針對(duì)國(guó)內(nèi)天然氣供應(yīng)緊張的問(wèn)題,某市政府及時(shí)安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅(jiān)戰(zhàn).某研究人員為了了解天然氣的需求狀況,對(duì)該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需示量 (單位:千萬(wàn)立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測(cè)2018年該地區(qū)的天然氣需求量;
(Ⅱ)政府部門(mén)為節(jié)約能源出臺(tái)了《購(gòu)置新能源汽車(chē)補(bǔ)貼方案》,該方案對(duì)新能源汽車(chē)的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類(lèi),A類(lèi):每車(chē)補(bǔ)貼1萬(wàn)元,B類(lèi):每車(chē)補(bǔ)貼2.5萬(wàn)元,C類(lèi):每車(chē)補(bǔ)貼3.4萬(wàn)元.某出租車(chē)公司對(duì)該公司60輛新能源汽車(chē)的補(bǔ)貼情況進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
類(lèi)型 | 類(lèi) | 類(lèi) | 類(lèi) |
車(chē)輛數(shù)目 | 10 | 20 | 30 |
為了制定更合理的補(bǔ)貼方案,政府部門(mén)決定利用分層抽樣的方式了解出租車(chē)公司新能源汽車(chē)的補(bǔ)貼情況,在該出租車(chē)公司的60輛車(chē)中抽取6輛車(chē)作為樣本,再?gòu)?輛車(chē)中抽取2輛車(chē)進(jìn)一步跟蹤調(diào)查.若抽取的2輛車(chē)享受的補(bǔ)貼金額之和記為“”,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在x=0處的切線方程為y=bx.(e≈2.718 28)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈R時(shí),求證:f(x)≥-x2+x;
(3)若f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017吉林延邊州模擬)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(1)求動(dòng)點(diǎn)A的軌跡M的方程;
(2)P為軌跡M上的動(dòng)點(diǎn),△PBC的外接圓為☉O1,當(dāng)點(diǎn)P在軌跡M上運(yùn)動(dòng)時(shí),求點(diǎn)O1到x軸的距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com