精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)已知在函數的圖象上以N(1,n)為切點的切線的傾斜角為

   (1)求m、n的值;

           (2)是否存在最小的正整數k,使得不等式恒成立?如果存在,請求出最小的正整數k;如果不存在,請說明理由;

   (3)求證:.

 

【答案】

(1);(2)k=2010;(3)略

【解析】(1)依題意,得

 

  …………………………………………………………(4分)

   (2)令

在此區(qū)間為增函數

在此區(qū)間為減函數

在此區(qū)間為增函數

處取得極大值  ……………………………………………6分

因此,當    ………………………………8分

要使得不等式

所以,存在最小的正整數k=2010,

使得不等式恒成立.  ……………………10分

  (3)(方法一)

   

  ……………………………………………12分

又∵   ∴由(2)知為增函數,

綜上可得:  ………………14分

(方法2)由(2)知,函數

上是減函數,在[,1]上是增函數

所以,當時,-

  

………12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案