如圖所示,矩形中,,,,且,交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
(1)證明過程詳見解析;(2).
解析試題分析:本題主要考查線線垂直、線面垂直、線線平行、線面平行的判定和性質(zhì)以及三棱錐的體積等基礎(chǔ)知識(shí),考查空間想象能力和推理論證能力以及運(yùn)算能力.第一問,由于為矩形,所以是中點(diǎn),由于⊥平面,利用線面垂直的性質(zhì),得,而在中,,,所以是中點(diǎn),所以∥,利用線面平行的判定得∥平面;第二問,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4a/5/hfjcj.png" style="vertical-align:middle;" />⊥平面,所以⊥平面,利用線面垂直的性質(zhì),所以垂直面內(nèi)的線,同理,⊥,利用線面垂直的判定,得⊥平面,所以利用第一問的結(jié)論得面,在中求出的長,在中求出的長,從而求出的面積,用等體積轉(zhuǎn)化法求.
試題解析:(1)由題意可得是的中點(diǎn),連結(jié),
∵⊥平面,∴.而,∴是的中點(diǎn), 2分
在中,,∴∥平面. 5分
(2)∵⊥平面,,∴⊥平面,則⊥.
又∵⊥平面,則⊥,又,∴⊥平面. 8分
∵∥.而⊥平面,∴⊥平面.∵是中點(diǎn),是中點(diǎn),
∴∥且==1.∴Rt△
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐,面,∥,,,,,為上一點(diǎn),是平面與的交點(diǎn).
(1)求證:∥;
(2)求證:面;
(3)求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為的正方形,,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點(diǎn),使直線與平面所成的角是?若存在,求的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知的直徑,點(diǎn)、為上兩點(diǎn),且,,為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).
(Ⅰ)求證:;
(Ⅱ)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說明理由;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點(diǎn).
(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.
(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的大。
(Ⅲ)在線段上是否存在一點(diǎn),使得∥平面?如果存在,求的值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com