【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,2,則輸出v的值為( )
A.66
B.33
C.16
D.8
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為 的正方形ABCD中,E、O分別為 AD、BC的中點,沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2所示,點G 在BC上,BG=2GC,M、N分別為AB、EG中點.
(Ⅰ)求證:MN∥平面OBC;
(Ⅱ)求二面角 G﹣ME﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點為F(2,0),點P(2, )在橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線,交橢圓C于A、B兩點,點M在橢圓C上,坐標原點O恰為△ABM的重心,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2012﹣2016年的收入與支出情況如表所示:
收入x(億元) | 2.2 | 2.6 | 4.0 | 5.3 | 5.9 |
支出y(億元) | 0.2 | 1.5 | 2.0 | 2.5 | 3.8 |
根據(jù)表中數(shù)據(jù)可得回歸直線方程為 =0.8x+ ,依次估計如果2017年該公司收入為7億元時的支出為( )
A.4.5億元
B.4.4億元
C.4.3億元
D.4.2億元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 由橢圓短軸的一個端點與兩個焦點構(gòu)成一個等邊三角形.它的面積為4 .
(1)求橢圓C的方程;
(2)已知動點B(m,n)(mn≠0)在橢圓上,點A(0,2 ),直線AB交x軸于點D,點B′為點B關(guān)于x軸的對稱點,直線AB′交x軸于點E,若在y軸上存在點G(0,t),使得∠OGD=∠OEG,求點G的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓 + =1(a>b>0)的上頂點為A,左右頂點為B,C,右焦點為F,|AF|=3,且△ABC的周長為14.
(1)求橢圓的離心率;
(2)過點M(4,0)的直線l與橢圓相交于不同兩點P,Q,點N在線段PQ上,設(shè)λ= = ,試判斷點N是否在一條定直線上,并求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級,隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:
(Ⅰ)試確定圖中實數(shù)a與b的值;
(Ⅱ)規(guī)定等級D為“不合格”,其他等級為“合格”,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若從甲、乙兩校“合格”的學(xué)生中各選1名學(xué)生,求甲校學(xué)生成績高于乙校學(xué)生成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若a=4,求△ABC的面積S的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{xn}的前n項和為Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求數(shù)列{xn}的通項公式;
(2)若數(shù)列{yn}滿足yn+1﹣yn=xn(n∈N*),且y1=2,求滿足不等式 的最小正整數(shù)n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com