若關(guān)于x的不等式|x-a|<2-x2至少有一個負數(shù)解,則實數(shù)a的取值范圍是(  )
A、(-
5
4
,2)
B、(-
7
4
,2)
C、(-
9
4
,2)
D、(-
7
4
,3)
分析:在同一坐標系畫出y=2-x2(x<0,y<0)和 y=|x|兩個圖象,利用數(shù)形結(jié)合思想,易得實數(shù)a的取值范圍.
解答:解:|x-a|<2-x2且 0<2-x2精英家教網(wǎng)
在同一坐標系畫出y=2-x2(x<0,y<0)和 y=|x|兩個圖象
將絕對值函數(shù)y=|x|向右移動當(dāng)左支經(jīng)過 (0,2)點,a=2
將絕對值函數(shù)y=|x|向左移動讓右支與拋物線相切 (-
1
2
,
7
4
)點,a=-
9
4
   
故實數(shù)a的取值范圍是(-
9
4
,2)
故選C.
點評:本題考查的知識點是一元二次函數(shù)的圖象,及絕對值函數(shù)圖象,其中在同一坐標中,畫出y=2-x2(x<0,y<0)和 y=|x|兩個圖象,結(jié)合數(shù)形結(jié)合的思想得到答案,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.若關(guān)于x的不等式
x-m
g(x)
x
對任意不等于1的正實數(shù)都成立,則實數(shù)m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)若關(guān)于x的不等式|x+2|+|x-1|>log2a的解集為R,則實數(shù)a的取值范圍是
(0,8)
(0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)設(shè)a>0,若關(guān)于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,則a的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安二模)若關(guān)于x的不等式|x+1|+|x-m|>4的解集為R,則實數(shù)m的取值范圍
{m|m>3或m<-5}
{m|m>3或m<-5}

查看答案和解析>>

同步練習(xí)冊答案