(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)當(dāng)時,求的最大值;
(Ⅱ)令,(),其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(1)的極大值為,此即為最大值;(2)

(1)求出函數(shù)的導(dǎo)數(shù),求出單調(diào)區(qū)間,利用單調(diào)性求出最值,注意函數(shù)本身的定義域;
(2)恒成立問題,一般分離參數(shù),,在最值處成立即可,,   。
解:(Ⅰ)依題意,知的定義域?yàn)椋?,+∞),
當(dāng)時,,
(2′)令=0,
解得.(∵
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220138503517.png" style="vertical-align:middle;" />有唯一解,所以,當(dāng)時,
,此時單調(diào)遞增;
當(dāng)時,,此時單調(diào)遞減。
所以的極大值為,此即為最大值………6分
(Ⅱ),
則有,在上恒成立,8分
所以,                  10分
當(dāng)時,取得最大值
所以………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,函數(shù)的圖象在點(diǎn)P處的切線方程是,則             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),.若的圖象與的圖象有且僅有兩個不同的公共點(diǎn),則下列判斷正確的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

3.(理)是定義在R上的兩個可導(dǎo)函數(shù),若,滿足,則滿足(   )
A.B.為常數(shù)函數(shù)
C.D.為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域是,,對任意,則不等式的解集為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在點(diǎn)處的導(dǎo)數(shù)是
A.B.C.(D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)函數(shù)為,且,則等于 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若f(x)在R上可導(dǎo), ,則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、 若函數(shù),則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案