對(duì)函數(shù)f(x)=3x4+4x3-12x2+15,給出命題:
①f(x)的極小值只有f(-2)=-17,f(1)=10,極大值為f(0)=15
②f(x)的極小值只有f(-1)=2,f(1)=10,極大值為f(0)=15.
③f(x)極大值為f(2)=47,極小值f(0)=15,f(-2)=-17
④極大值為f(-2)=-17,f(1)=10,極小值為f(-1)=2其中正確命題的個(gè)數(shù)為
[ ]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:浙江省溫州市蒼南縣三校聯(lián)考(宜山中學(xué)、龍港二高、靈溪一高)2006-2007學(xué)年度第一學(xué)期高三期中考試卷數(shù)學(xué)理 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省懷仁中學(xué)2009屆高三第一學(xué)期期末模擬試題數(shù)學(xué)試卷 題型:022
設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)k>0,使|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“海寶”函數(shù).給出下列函數(shù):
①f(x)=x2;②f(x)=sinx+cosx;③;④f(x)=3x+1
其中f(x)是“海寶”函數(shù)的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)命題p:函數(shù)f(x)=lg(ax2-x+a)的定義域?yàn)镽;命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)均成立.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下學(xué)期第一次質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:填空題
把函數(shù)f(x)=x3-3x的圖象C1向右平移u個(gè)單位長(zhǎng)度,再向下平移v個(gè)單位長(zhǎng)度后得到圖象C2,若對(duì)任意u>0,曲線C1與C2至多只有一個(gè)交點(diǎn),則v的最小值為_(kāi)________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆度河南泌陽(yáng)二高高三第一次月考數(shù)學(xué)試卷 題型:填空題
設(shè)函數(shù)f(x) 是定義在R上的偶函數(shù),且對(duì)任意的x ÎR恒有f(x+1)=-f(x),已知當(dāng)x Î[0,1]時(shí),f(x)=3x.則
① 2是f(x)的周期; 、 函數(shù)f(x)的最大值為1,最小值為0;
③ 函數(shù)f(x)在(2,3)上是增函數(shù); ④ 直線x=2是函數(shù)f(x)圖象的一條對(duì)稱軸.
其中所有正確命題的序號(hào)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com