已知在公比為實(shí)數(shù)的等比數(shù)列{an}中,a3=4,且a4,a5+4,a6成等差數(shù)列.則求數(shù)列{an}的通項(xiàng)公式為
an=2n-1
an=2n-1
分析:設(shè)公比為q,可得2(4q2+4)=4q+4q3,解得q=2,進(jìn)而可得a1,代入等比數(shù)列的通項(xiàng)公式可得答案.
解答:解:設(shè)數(shù)列{an}的公比為q(q∈R),
由題意可得2(4q2+4)=4q+4q3
整理可得(q2+1)(q-2)=0,
∵q∈R,∴q=2,a1=
a3
q2
=1,
∴數(shù)列{an}的通項(xiàng)公式為:an=2n-1,
故答案為:an=2n-1
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式,涉及等差數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在公比為實(shí)數(shù)的等比數(shù)列{an}中,a3=4,且a4,a5+4,a6成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求
2an+1Sn
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在公比為實(shí)數(shù)的等比數(shù)列中,,且,,成等差數(shù)列.

     (Ⅰ)求數(shù)列的通項(xiàng)公式;

     (Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在公比為實(shí)數(shù)的等比數(shù)列中,,且,,成等差數(shù)列.

   (Ⅰ)求數(shù)列的通項(xiàng)公式;

   (Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高二第一次階段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)已知在公比為實(shí)數(shù)的等比數(shù)列中,,且成等差數(shù)列.

(1) 求數(shù)列的通項(xiàng)公式;

(2) 設(shè)數(shù)列的前n項(xiàng)和為Sn,求S10.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案