等差數(shù)列{an}的前m項(xiàng)和為20,前2m項(xiàng)和為70,則它的前3m的和為


  1. A.
    130
  2. B.
    150
  3. C.
    170
  4. D.
    210
B
分析:根據(jù)等差數(shù)列的性質(zhì)Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列,根據(jù)仍然成等差數(shù)列.進(jìn)而代入數(shù)值可得答案.
解答:若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.
因?yàn)樵诘炔顢?shù)列{an}中有Sm=20,S2m=70,
S3m-70+20=2(70-20)
所以S3m=150.
故選B.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),解決此類(lèi)問(wèn)題的關(guān)鍵是熟悉等差數(shù)列的前n項(xiàng)和的有關(guān)性質(zhì),本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項(xiàng)和為Rn,若Rn<λ對(duì)n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前2006項(xiàng)的和S2006=2008,其中所有的偶數(shù)項(xiàng)的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n.若對(duì)一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案