(本小題滿分14分)

已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)

(1)討論f(x)的單調(diào)性;

(2)設(shè)g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.

 

【答案】

,此時上為減函數(shù),在上為增函數(shù),在上為減函數(shù);

時,,此時上為減函數(shù);

時,此時上為減函數(shù),在上為增函數(shù),在上為減函數(shù).

⑵ a的取值范圍為

【解析】

試題分析:⑴,令,

所以

所以 …………………………………………………………………3分

,此時上為減函數(shù),在上為增函數(shù),在上為減函數(shù);

時,,此時上為減函數(shù);

時,此時上為減函數(shù),在上為增函數(shù),在上為減函數(shù). ………………………………………………………………………………6分

⑵ 當時,,則上為增函數(shù),在上為減函數(shù)

上的值域為 ………………………………………8分

上為增函數(shù),其值域為……10分

等價于……………………………………………12分

存在使得成立,只須

,又

∴a的取值范圍為. ………………………………………………………………14分

考點:本題主要考查應(yīng)用導數(shù)研究函數(shù)的單調(diào)性,恒成立問題。

點評:典型題,本題屬于導數(shù)應(yīng)用中的基本問題,(2)涉及恒成立問題,轉(zhuǎn)化成求函數(shù)的最值,這種思路是一般解法,往往要利用“分離參數(shù)法”,本題最終化為最值之間故選的研究,體現(xiàn)考題“起點高,落點低”的特點。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案