【題目】如圖,在三棱柱 中, 底面 ,且 為等邊三角形, , 為 的中點.
(1)求證:直線 平面 ;
(2)求證:平面 平面 ;
(3)求三棱錐 的體積.
【答案】
(1)證明:如圖所示
連接 交 于 ,連接
因為四邊形 是平行四邊形,
所以 為 的中點,
又因為 為 的中點,
所以 為 的中位線,
所以
又 平面 平面 ,
所以 平面 .
(2)證明:因為 是等邊三角形, 為 的中點,
所以
又因為 底面
所以
根所線面垂直的判定定理得 平面
又因為 平面
所以平面 平面 ;
(3)解:由(2)知, 中,
【解析】(1)由題意構(gòu)造平面BC1D內(nèi)的直線,再證明直線AB1與這條直線平行。(2)根據(jù)線面垂直的判定定理即可得證。(3)根據(jù)題意利用等體積法即可求出體積。
【考點精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:
【題目】銳角△ABC中,角A,B,C的對邊分別為a,b,c,向量 , ,且 .
(1)求角B的大。
(2)若sinAsinC=sin2B,求a﹣c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是( ) ①對任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能構(gòu)成一個三角形的三條邊長;
③若△ABC為鈍角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的是( )
A.若a>b>0,則
B.向量 (m∈R)共線的充要條件是m=0
C.命題“?n∈N* , 3n>(n+2)?2n﹣1”的否定是“?n∈N* , 3n≥(n+2)?2n﹣1”
D.已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)?f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個零點”的逆命題為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E﹣B1D﹣B的余弦值為 ?若存在,求出 的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com