已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的函數(shù),給出下列結(jié)論:
①若存在常數(shù)x0,使f′(x)=0,則函數(shù)f(x)必在x0處取得極值;
②若函數(shù)f(x)在x0處取得極值,則函數(shù)f(x)在x0處必可導(dǎo);
③若函數(shù)f(x)在R上處處可導(dǎo),則它有極小值就是它在R上的最小值;
④若對于任意x≠x0都有f(x)>f(x0),則f(x0)是函數(shù)f(x)的最小值;
⑤若對于任意x<x0有f′(x)>0,對于任意x>x0有f′(x)<0,則f(x0)是函數(shù)f(x)的一個(gè)最大值;
其中正確結(jié)論的序號是 ______.
導(dǎo)數(shù)等于0的值不一定是極值,要注意驗(yàn)證導(dǎo)數(shù)為0處左右的函數(shù)的單調(diào)性確定是否極值,故①不正確
極值點(diǎn)只能在函數(shù)不可導(dǎo)的點(diǎn)或?qū)?shù)為零的點(diǎn)中取,故②不正確
根據(jù)極小值不止一個(gè),極值只是相對于一點(diǎn)附近的局部性質(zhì),故極小值就是它在R上的最小值是錯(cuò)的,故③不正確
最值是相對整個(gè)定義域內(nèi)或所研究問題的整體的性質(zhì),根據(jù)函數(shù)最小值的定義可知④正確
連續(xù)函數(shù)在R內(nèi)只有一個(gè)極值,那么極大值就是最大值,故⑤正確
故答案為:④⑤
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊答案