矩陣與變換
若矩陣A有特征值λ1=3,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
1
2
,求矩陣A.
分析:設(shè)矩陣 A=
ab
cd
,根據(jù)矩陣A有特征值λ1=3,λ2=-1,它們所對(duì)應(yīng)的特征向量,則有
3-a-b
-c3-d
1
0
=
0
0
①,
-1-a-b
-c-1-d
1
2
=
0
0
②,由此能夠求出矩陣A.
解答:解:設(shè)矩陣 A=
ab
cd
,這里a,b,c,d∈R,
因?yàn)?nbsp;矩陣A有特征值λ1=3,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
1
2
,
則有
3-a-b
-c3-d
1
0
=
0
0
①,
-1-a-b
-c-1-d
1
2
=
0
0
②,
根據(jù)①②,則有 
a=3
b=-2
c=0
d=-1
,
因此 A=
3-2
0-1
點(diǎn)評(píng):本題考查矩陣的性質(zhì)和應(yīng)用、特征值與特征向量的計(jì)算,解題時(shí)要注意特征值與特征向量的計(jì)算公式的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,請(qǐng)考生任選2題作答.
(1)選修4-2:矩陣與變換
已知a,b∈R,若M=
-1a
b3
所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)

①將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
②判斷直線l和圓C的位置關(guān)系.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為
(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案