如圖,已知圓C:,定點(diǎn)A(,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)N在AM上,點(diǎn)P在 CM上,且滿足,點(diǎn)P的軌跡為曲線E,

(1)   求曲線E 的方程;

(2)   當(dāng)為鈍角,求點(diǎn)P的橫坐標(biāo)的取值范圍。

 

 

【答案】

(1);(2).

【解析】本試題主要是考查了橢圓定義,以及橢圓方程的求解,及如果角為鈍角,則坐標(biāo) 滿足的關(guān)系式的求解。

解:(Ⅰ)依題意PN為AM的中垂線

…………………………………………………………2分

又A(,0),C(,0)

所以P的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………6分

(Ⅱ)橢圓的半焦距c=,以O(shè)為圓心,c為半徑做圓解方程組

,得交點(diǎn)橫坐標(biāo)為,又同圓中同弧所對(duì)的角中,頂點(diǎn)在圓內(nèi)的角大于圓周上的角,頂點(diǎn)在圓外的小于圓周角,故當(dāng)p在橢圓和圓的兩個(gè)交點(diǎn)間的上下兩段橢圓弧上時(shí),為鈍角,所以

點(diǎn)P的橫坐標(biāo)的取值范圍為……………………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓A過(guò)定點(diǎn)B(0,2),圓心A在拋物線C:x2=4y上運(yùn)動(dòng),MN為圓A在x軸上所截得的弦.
(Ⅰ)證明:|MN|是定值;
(Ⅱ)討論拋物線C的準(zhǔn)線l與圓A的位置關(guān)系;
(Ⅲ)設(shè)D是拋物線C的準(zhǔn)線l上任意一點(diǎn),過(guò)D向拋物線作兩條切線DS,DT(切點(diǎn)是S,T),判斷直線ST是否過(guò)定點(diǎn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C過(guò)點(diǎn)M(2,1),兩個(gè)焦點(diǎn)分別為(-
6
,0)、(
6
,0)
,O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓C于不同的兩點(diǎn)A、B,
(Ⅰ)求橢圓C的方程;
(Ⅱ)試問(wèn)直線MA、MB的斜率之和是否為定值,若為定值,求出以線段AB為直徑且過(guò)點(diǎn)M的圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR|•|OS|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)如圖,已知橢圓C:
x2
4
+y2=1
,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若
OP
=m
OA
+n
OB
,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案