如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M滿足________時(shí),平面MBD⊥平面PCD.(只要填寫一個(gè)你認(rèn)為是正確的條件即可)
DM⊥PC(答案不唯一)
由定理可知,BD⊥PC.
∴當(dāng)DM⊥PC時(shí),即有PC⊥平面MBD,而PC?平面PCD,
∴平面MBD⊥平面PCD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,,.

(1)求證:平面⊥平面
(2)求點(diǎn)C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).

(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′-MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且=2.求證:直線EG,F(xiàn)H,AC相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱垂直底面,。
(1)求證:
(2)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐S-ABC中,如圖,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)證明:SC⊥BC;
(2)求側(cè)面SBC與底面ABC所成的二面角大。
(3)(理)求異面直線SC與AB所成的角的大。ㄓ梅慈呛瘮(shù)表示).
(文)求三棱錐的體積VS-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線和平面,則的一個(gè)必要條件是(    )
A.,B.,
C.,D.成等角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條互不重合的直線m,n,兩個(gè)不同的平面α,β,下列命題中正確的是(  )
A.若m∥α,n∥β,且m∥n,則α∥β
B.若m⊥α,n∥β,且m⊥n,則α⊥β
C.若m⊥α,n∥β,且m∥n,則α∥β
D.若m⊥α,n⊥β,且m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)α、β、γ為彼此不重合的三個(gè)平面,l為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
③若直線l與平面α內(nèi)的無數(shù)條直線垂直,則直線l與平面α垂直;
④若α內(nèi)存在不共線的三點(diǎn)到β的距離相等,則平面α平行于平面β;
上面命題中,真命題的序號(hào)為________(寫出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案