【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失 4000元以下 | 經(jīng)濟(jì)損失 4000元以上 | 合計(jì) | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
參考公式: .
【答案】(1)有把握;(2).
【解析】
(1)由直方圖得到列聯(lián)表,利用公式求得的值,與臨界值比較即可作出判定,得到結(jié)論.(2)設(shè)李師傅、張師傅到小區(qū)的時(shí)間分別為,得到試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域及事件表示“李師傅比張師傅早到小區(qū)”, 根據(jù)幾何概型,利用面積比可求,則李師傅比張師傅早到小區(qū)的天數(shù)的分布列為二項(xiàng)分布,利用二項(xiàng)分布的期望公式可得結(jié)果.
(1)如下表:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計(jì) | |
捐款超過500元 | 30 | 9 | 39 |
捐款低于500元 | 5 | 6 | 11 |
合計(jì) | 35 | 15 | 50 |
所以有95%以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
(2)
設(shè)李師傅、張師傅到小區(qū)的時(shí)間分別為,則)可以看成平面中的點(diǎn).試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>,則SΩ=1,事件A表示“李師傅比張師傅早到小區(qū)”,所構(gòu)成的區(qū)域?yàn)?/span>A={(x,y)|y≥x,7≤x≤8,7.5≤y≤8.5},
即圖中的陰影部分面積為,所以,
李師傅比張師傅早到小區(qū)的天數(shù)的分布列為二項(xiàng)分布,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人們隨著生活水平的提高,健康意識(shí)逐步加強(qiáng),健身開始走進(jìn)人們生活,在健身方面投入越來越多,為了調(diào)查參與健身的年輕人一年健身的花費(fèi)情況,研究人員在地區(qū)隨機(jī)抽取了參加健身的青年男性、女性各50名,將其花費(fèi)統(tǒng)計(jì)情況如下表所示:
分組(花費(fèi)) | 頻數(shù) |
6 | |
22 | |
25 | |
35 | |
8 | |
4 |
男性 | 女性 | 合計(jì) | |
健身花費(fèi)不超過2400元 | 23 | ||
健身花費(fèi)超過2400元 | 20 | ||
合計(jì) |
(1)完善二聯(lián)表中的數(shù)據(jù);
(2)根據(jù)表中的數(shù)據(jù)情況,判斷是否有99%的把握認(rèn)為健身的花費(fèi)超過2400元與性別有關(guān);
(3)求這100名被調(diào)查者一年健身的平均花費(fèi)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替).
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.01 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若直線是函數(shù)的切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為了了解該校學(xué)生課外閱讀的情況,在該校三年級學(xué)生中隨機(jī)抽取了20名男生和20名女生進(jìn)行調(diào)查,得到他們在過去一整年內(nèi)各自課外閱讀的書數(shù)(本),并根據(jù)統(tǒng)計(jì)結(jié)果繪制出如圖所示的莖葉圖.
如果某學(xué)生在過去一整年內(nèi)課外閱讀的書數(shù)(本)不低于90本,則稱該學(xué)生為“書蟲”.
(1)根據(jù)頻率分布直方圖填寫下面列聯(lián)表,并據(jù)此資料,在犯錯(cuò)誤的概率不超過10%的前提下,你是否認(rèn)為“書蟲”與性別有關(guān)?
男生 | 女生 | 總計(jì) | |
書蟲 | |||
非書蟲 | |||
總計(jì) |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
k | 1.323 | 2.072 | 2.706 | 3.814 | 5.024 |
(2)在所抽取的20名女生中,從過去一整年內(nèi)課外閱讀的書數(shù)(本)不低于86本的學(xué)生中隨機(jī)抽取兩名,求抽出的兩名學(xué)生都是“書蟲”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形.若,且與底面所成角的正切值為.
(1)證明:平面平面;
(2)是線段上一點(diǎn),記,是否存在實(shí)數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,點(diǎn)在以為直徑的圓上,平面平面,點(diǎn)在線段上,且,,,,點(diǎn)為的重心,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):
141 432 341 342 234 142 243 331 112 322
342 241 244 431 233 214 344 142 134 412
由此可以估計(jì),恰好第三次就停止摸球的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com