【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意 都有f(kx2)+f(2x﹣1)>0成立,求實數(shù)k的取值范圍.

【答案】
(1)解:因為f(x)是奇函數(shù),所以f(0)=0 =0,解得b=1,

f(x)= ,又由f(1)=﹣f(﹣1) ,解得a=2


(2)證明:由(1)可得:f(x)= =

x1<x2,∴ >0,

則f(x1)﹣f(x2)= = >0,

∴f(x1)>f(x2).

∴f(x)在R上是減函數(shù)


(3)解:∵函數(shù)f(x)是奇函數(shù).

∴f(kx2)+f(2x﹣1)>0成立,等價于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,

∵f(x)在R上是減函數(shù),∴kx2<1﹣2x,

∴對于任意 都有kx2<1﹣2x成立,

∴對于任意 都有k< ,

設g(x)= ,

∴g(x)= = ,

令t= ,t∈[ ,2],

則有 ,∴g(x)min=g(t)min=g(1)=﹣1

∴k<﹣1,即k的取值范圍為(﹣∞,﹣1)


【解析】(1)直接根據(jù)函數(shù)是奇函數(shù),滿足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到關于a,b的兩個等式,解方程組求出a,b的值.(2)利用減函數(shù)的定義即可證明.(3))f(kx2)+f(2x﹣1)>0成立,等價于f(kx2)>﹣f(2x﹣1)=f(1﹣2x),即k< 成立,設g(x)= ,
換元使之成為二次函數(shù),再求最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】把正方形AA1B1B以邊AA1所在直線為軸旋轉(zhuǎn)900到正方形AA1C1C,其中D,E,F(xiàn)分別為B1A,C1C,BC的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國移動通信公司早前推出全球通移動電話資費個性化套餐”,具體方案如下:

方案代號

基本月租(元)

免費時間(分鐘)

超過免費時間的話費(元/分鐘)

1

30

48

060

2

98

170

060

3

168

330

050

4

268

600

045

5

388

1000

040

6

568

1700

035

7

788

2588

030

I)寫出套餐中方案的月話費(元)與月通話量(分鐘)(月通話量是指一個月內(nèi)每次通話用時之和)的函數(shù)關系式;

II)學生甲選用方案,學生乙選用方案,某月甲乙兩人的電話資費相同,通話量也相同,求該月學生甲的電話資費;

III)某用戶的月通話量平均為320分鐘,則在表中所列出的七種方案中,選擇哪種方案更合算,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是
①任取x>0,均有3x>2x
②當a>0,且a≠1時,有a3>a2;
③y=( x是減函數(shù);
④函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
⑤若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出的以下四個問題中,不需要用條件語句來描述其算法是(
A.輸入一個實數(shù)x,求它的絕對值
B.求面積為6的正方形的周長
C.求三個數(shù)a、b、c中的最大數(shù)
D.求函數(shù)f(x)= 的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H,則以下命題中,錯誤的命題是(

A.點H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延長線經(jīng)過點C1
D.直線AH和BB1所成角為45°

查看答案和解析>>

同步練習冊答案