【題目】(2015·江蘇)某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為了l1, l2 , 山區(qū)邊界曲線為C , 計(jì)劃修建的公路為l , 如圖所示,M , N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1, l2 的距離分別為5千米和40千米,點(diǎn)N到l1, l2的距離分別為20千米和2.5千米,以l1, l2所在的直線分別為x , y軸,建立平面直角坐標(biāo)系xOy , 假設(shè)曲線C符合函數(shù)y=(其中a , b為常數(shù))模型.
(1)求a , b的值;
(2)設(shè)公路l與曲線C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫(xiě)出公路l長(zhǎng)度的函數(shù)解析式f(t),并寫(xiě)出其定義域;
②當(dāng)t為何值時(shí),公路l的長(zhǎng)度最短?求出最短長(zhǎng)度.
【答案】
(1)
a=1000, b=0
(2)
①f(t)=,定義域?yàn)閇5,20]②t=10, f(t)min=15千米。
【解析】由題意得函數(shù)y= 過(guò)點(diǎn)位(5,40), (20, 2.5),列方程組就可解當(dāng)a. b的值(2) ①求公路了長(zhǎng)度的函數(shù)解析式}I川,就是求出直線l與x,y軸交點(diǎn),再利用兩點(diǎn)間距離公式計(jì)算即可, 關(guān)鍵是利用導(dǎo)數(shù)幾何意義求出直線了方程,再根據(jù)M, N為C的兩個(gè)端點(diǎn)的限制條件得定義域?yàn)閇5,20]②對(duì)函數(shù)解析式f(t)解析式根式內(nèi)部分單獨(dú)求導(dǎo)求最值,注意列表說(shuō)明函數(shù)變化趨勢(shì).
試題解析:(1)由題意知,點(diǎn)M,N的坐標(biāo)分別為(5,40),(20, 2.5)。將其代入y=,得, 解得a=1000, b=0 。
(2) ①由(1)知, y=(5≤x≤20), 則點(diǎn)P的坐標(biāo)為(t,), 設(shè)在點(diǎn)P處的切線l交x, y軸分別于A,B點(diǎn),y=-, 則l的方程為y-=-(x-t), 由此得A(,0), B(0, ).
故f(t)==,t(5,20),
②設(shè)g(t)=t2+, 則g'(t)=2t-. 令g'(t)=0,解得t=10. 當(dāng)t(5,10)時(shí),g'(t)<0, g(t)是減函數(shù)。
當(dāng)t(10,20), g'(t)>0, g(t)是減函數(shù)。從而, 當(dāng)t=10時(shí), 函數(shù)g(t)有極小值,要是最小值,所以 g(t)min=300, 此時(shí)f(t)min=15。
答:當(dāng)t=10時(shí),公路l的長(zhǎng)度最短, 最短長(zhǎng)度為15千米。
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點(diǎn),圓O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高交于點(diǎn)G,且與AB,AC分別相切于E,F兩點(diǎn).
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
(3)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·陜西)隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(2)西安市某學(xué)校擬從4月份的一個(gè)晴天開(kāi)始舉行連續(xù)兩天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過(guò)切削,加工成一個(gè)體積盡可能大的正方體新工件,并使新工件的一個(gè)面落在原工作的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b 是函數(shù) 的兩個(gè)不同的零點(diǎn),且a,b,-2 這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在[)上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·湖北)設(shè)函數(shù),的定義域均為,且是奇函數(shù),是偶函數(shù),,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求,的解析式,并證明:當(dāng)時(shí),,;
(Ⅱ)設(shè),,證明:當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com