【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1: (t為參數),C2: (θ為參數). (Ⅰ)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點P對應的參數為t=﹣ ,Q為C2上的動點,求線段PQ的中點M到直線C3:ρcosθ﹣ ρsinθ=8+2 距離的最小值.
【答案】解:(Ⅰ)∵曲線C1: (t為參數), ∴曲線C1的普通方程為:(x﹣4)2+(y+3)2=1,
∵曲線C2: (θ為參數),
∴曲線C2的普通方程為: ,
曲線C1為圓心是(4,﹣3),半徑是1的圓.
曲線C2為中心在坐標原點,焦點在x軸上,長半軸長是6,短半軸長是2的橢圓.
(Ⅱ)當t= 時,P(4,﹣4),
設Q(6cosθ,2sinθ),則M(2+3cosθ,﹣2+sinθ),
∵直線C3:ρcosθ﹣ ,
∴直線C3的直角坐標方程為: ﹣(8+2 )=0,
M到C3的距離d=
=
=
=3﹣ .
從而當cos( )=1時,d取得最小值3﹣
【解析】(Ⅰ)由cos2θ+sin2θ=1,能求出曲線C1 , C2的普通方程,并能說明它們分別表示什么曲線.(Ⅱ)當t= 時,P(4,﹣4),設Q(6cosθ,2sinθ),則M(2+3cosθ,﹣2+sinθ),直線C3的直角坐標方程為: ﹣(8+2 )=0,由此能求出線段PQ的中點M到直線C3:ρcosθ﹣ 距離的最小值.
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,數列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,橢圓C上任意一點到橢圓兩個焦點的距離之和為6. (Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=kx﹣2與橢圓C交于A,B兩點,點P(0,1),且|PA|=|PB|,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)=xlnx有如下結論: ①該函數為偶函數;
②若f′(x0)=2,則x0=e;
③其單調遞增區(qū)間是[ ,+∞);
④值域是[ ,+∞);
⑤該函數的圖象與直線y=﹣ 有且只有一個公共點.(本題中e是自然對數的底數)
其中正確的是(請把正確結論的序號填在橫線上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,線段AB的中點為D.
(1)求證:平面VCD⊥平面ABC;
(2)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn為數列{an}的前n項和,Sn=2n2+5n.
(1)求證:數列{3 }為等比數列;
(2)設bn=2Sn﹣3n,求數列{ }的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com