【題目】某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運力,有效利用公共交通資源合理調(diào)度,在某地鐵站點進行試點調(diào)研市民對候車時間的等待時間(候車時間不能超過20分鐘),以便合理調(diào)度減少候車時間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進行調(diào)查分析,得到如下統(tǒng)計表和各時間段人數(shù)頻率分布直方圖:

分組

等待時間(分鐘)

人數(shù)

第一組

[0,5)

10

第二組

[5,10)

a

第三組

[10,15)

30

第四組

[15,20)

10


(1)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個人中隨機抽取3人至少一人來自第二組的概率;
(2)從這10人中隨機抽取3人進行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學期望.

【答案】
(1)解:由題可知,

采取分層抽樣的方法在第一,第二,第三,第四組分別抽。1,5,3,1人.

“在這10個人中隨機抽取3人至少一人來自第二組”記為事件A,


(2)解:X的可能取值為1,2,3,

,

所以X的分布列為

X

1

2

3

P


【解析】(1)由題先求出a,采取分層抽樣的方法在第一,第二,第三,第四組分別抽。1,5,3,1人.由此利用對立事件概率計算公式能求出在這10個人中隨機抽取3人至少一人來自第二組的概率.(2)X的可能取值為1,2,3,分別求出相應的概率,由此能求出X的分布列及數(shù)學期望.
【考點精析】關(guān)于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)F1,F(xiàn)2分別是橢圓C: (a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.

(1)若直線MN的斜率為,求C的離心率;

(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),且對任意,當時,都有

(1),試比較的大小關(guān)系;

(2)對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA平面ABCD,E為PD的中點,F(xiàn)為AC和BD的交點.

(1)證明:PB平面AEC;

(2)證明:平面PAC平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(1)求橢圓的方程;
(2)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線AB經(jīng)過⊙O上一點C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點,⊙O交直線OB于E、D.

(1)證明:直線AB與⊙O相切;
(2)若∠CED的正切值為 ,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},則(UA)∩B等于(
A.(﹣2,
B.( ,+∞)
C.[﹣2,
D.(﹣2,﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一.已知一個“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為

A. B. C. 39 D.

查看答案和解析>>

同步練習冊答案