【題目】如圖,四棱錐中,底面,,,,,是的中點.
(1)求證:;
(2)求證:面;
(3)求二面角E-AB-C的正切值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)根據(jù)線面垂直得到線線垂直;(2)由等腰三角形的性質(zhì)得到,由(1)推得面,故,進而得到結(jié)果;(3)過點E作EF⊥AC,垂足為.過點F作FG⊥AB,垂足為G.連結(jié)EG,是二面角的一個平面角,根據(jù)直角三角形的性質(zhì)求解即可.
.
易知,故面
(1)證明:∵底面,
又,,故面
面,故
(2)證明:,,故
是的中點,故
由(1)知,從而面,故
易知,故面
(3)過點E作EF⊥AC,垂足為.過點F作FG⊥AB,垂足為G.連結(jié)EG
∵PA⊥AC, ∴PA//EF ∴EF⊥底面且F是AC中點
∴故是二面角的一個平面角.
設(shè),則PA=BC=,EF=AF=
從而FG=,故.
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.
(Ⅰ)隨機選取件產(chǎn)品,設(shè)至少有一件通過檢測為事件,求事件的概率;
(Ⅱ)隨機選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)利用絕對值及分段函數(shù)知識,將函數(shù)的解析式寫成分段函數(shù);
(2)在給出的坐標系中畫出的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間和值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線過點,且,線段交圓的交點為點,是關(guān)于軸的對稱點.
(1)求直線的方程;
(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。
A.0,0
B.1,1
C.0,1
D.1,0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,點的極坐標為, 直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點, 為線段的中點.求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設(shè)點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),且對任意的x1,x2∈(-∞,1](x1≠x2)有(x1-x2)(f(x1)-f(x2))<0.則( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com