<0,已知下列不等式:①a+b<ab;②|a|>|b|;③a<b;④ a2>b2

其中正確的不等式個(gè)數(shù)是

  A.1              B.2                C.3                D.4

 

【答案】

A.

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314264819909149/SYS201301131427009177260213_DA.files/image001.png"><<0,所以∴b<a<0,∴|b|>|a|,故②③④不正確;a+b<0,ab>0,∴a+b<ab,故①正確。

考點(diǎn):本題考查不等式的性質(zhì)。

點(diǎn)評(píng):直接考查不等式的性質(zhì),要求我們熟練掌握不等式的性質(zhì),屬于基礎(chǔ)題型,

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)a,b>0,a≠b,已知下列不等式成立:
①2ab<a2+b2
②ab2+a2b<a3+b3;
③ab3+a3b<a4+b4;
④ab4+a4b<a5+b5
(Ⅰ)用類比的方法寫(xiě)出
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
<a6+b6
(Ⅱ)若a,b>0,a≠b,證明:a2b3+a3b2<a5+b5
(Ⅲ)將上述不等式推廣到一般的情形,請(qǐng)寫(xiě)出你所得結(jié)論的數(shù)學(xué)表達(dá)式(不證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四個(gè)命題:
①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f′(x0)=0,則它在x=x0處有極值;
②若不論m為何值,直線y=mx+1均與曲線
x2
4
+
y2
b2
=1
有公共點(diǎn),則b≥1;
③若x、y、z∈R+,a=x+
1
y
,b=y+
1
z
,c=z+
1
x
,則a、b、c中至少有一個(gè)不小于2;
④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
以上四個(gè)命題正確的是
③④
③④
(填入相應(yīng)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題:
①命題“若am2<bm2(a,b,m∈R),則a<b”;
②“a≥
1
8
”是“對(duì)任意的正數(shù)x,2x+
a
x 
≥1
”的充要條件;
③命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x<0”;
④已知p,q為簡(jiǎn)單命題,則“p∧q為假命題”是“p∨q為假命題”的充分不必要條件.
其中正確命題的序號(hào)是
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃州區(qū)模擬)下列4個(gè)命題
①命題“若am2<bm2(a,b,m∈R),則a<b”;
②“a≥
1
8
”是“對(duì)任意的正數(shù)x,2x+
a
x
≥1”的充要條件;
③命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x<0”;
④已知p,q為簡(jiǎn)單命題,則“p∧q為假命題”是“p∨q為假命題”的充分不必要條件;其中正確的命題個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
(1)若k∈R,且k
b
=
0
,則k=0或
b
=
0

(2)若
a
b
=0,則
a
=
0
b
=
0

(3)若不平行的兩個(gè)非零向量
a
,
b
滿足|
a
|=|
b
|,則(
a
+
b
)•(
a
-
b
)=0
(4)若
a
b
平行,則
a
b
=|
a
|•|
b
|
(5)(
a
b
)•
c
=
a
•(
b
c
)=
a
b
c

(6)若
a
≠0,則對(duì)任一非零向量
b
,有
a
b
≠0.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案