已知x≥0,y≥0,且x+2y=1,則2x+3y2的取值范圍是
[
3
4
,2]
[
3
4
,2]
分析:利用條件,將函數(shù)轉(zhuǎn)化為二次函數(shù),確定變量的范圍,利用配方法,即可求得結(jié)論.
解答:解:∵x+2y=1,∴x=1-2y
∴2x+3y2=2-4y+3y2=3(y-
2
3
2+
2
3

∵x≥0,y≥0,
∴0≤y≤
1
2

∴函數(shù)在[0,
1
2
]上單調(diào)減
∴y=0時,函數(shù)取得最大值2;y=
1
2
時,函數(shù)取得最小值
3
4

∴2x+3y2的取值范圍是[
3
4
,2]
故答案為:[
3
4
,2].
點評:本題考查代數(shù)式的取值范圍,解題的關(guān)鍵是將函數(shù)轉(zhuǎn)化為二次函數(shù),確定變量的范圍,利用配方法求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x≥0,y≥0,x+3y=9,則x2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x≥0,y≥0,且x+2y=1,則
2
x
+
3
y
的最小值等于
8+4
3
8+4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x≥0,y≥0,x+2y=1,則u=x+y2的取值范圍是
[
1
4
,1]
[
1
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x≥0,y≥0,且x+y=
π2
,則函數(shù)f(x,y)=cosx+cosy的值域是
 

查看答案和解析>>

同步練習(xí)冊答案