已知雙曲線的兩個(gè)焦點(diǎn)為F1(-數(shù)學(xué)公式,0)、F2數(shù)學(xué)公式,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是


  1. A.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
  2. B.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
  3. C.
    數(shù)學(xué)公式-y2=1
  4. D.
    x2-數(shù)學(xué)公式=1
C
分析:先設(shè)雙曲線的方程,再由題意列方程組,處理方程組可求得a,進(jìn)而求得b,則問題解決.
解答:設(shè)雙曲線的方程為-=1.
由題意得||PF1|-|PF2||=2a,|PF1|2+|PF2|2=(22=20.
又∵|PF1|•|PF2|=2,
∴4a2=20-2×2=16
∴a2=4,b2=5-4=1.
所以雙曲線的方程為-y2=1.
故選C.
點(diǎn)評(píng):本題主要考查雙曲線的定義與標(biāo)準(zhǔn)方程,同時(shí)考查處理方程組的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是( 。
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)是橢圓
x2
100
+
y2
64
=1
的兩個(gè)頂點(diǎn),雙曲線的兩條準(zhǔn)線經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn),則此雙曲線的方程是( 。
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為橢圓
x2
16
+
y2
7
=1
的長(zhǎng)軸的端點(diǎn),其準(zhǔn)線過(guò)橢圓的焦點(diǎn),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為F1(-
5
,0)
F2(
5
,0)
,P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點(diǎn),|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案