已知x,y,z∈R+,且
1
x
+
2
y
+
3
z
=1,則x+
y
2
+
z
3
的最小值
 
分析:x,y,z∈R+,且
1
x
+
2
y
+
3
z
=1,則x+
y
2
+
z
3
=(x+
y
2
+
z
3
)  (
1
x
+
2
y
+
3
z
)
=1+
y
2x
+
z
3x
+
2x
y
+1+
2z
3y
+
3x
z
+
3y
2z
+1
.由此可知x+
y
2
+
z
3
的最小值.
解答:解:x,y,z∈R+,且
1
x
+
2
y
+
3
z
=1,則x+
y
2
+
z
3
=(x+
y
2
+
z
3
)  (
1
x
+
2
y
+
3
z
)

=1+
y
2x
+
z
3x
+
2x
y
+1+
2z
3y
+
3x
z
+
3y
2z
+1

≥3+2
y
2x
2x
y
+2
z
3x
3x
z
+2
2z
3y
3y
2z
=9.
答案:9.
點評:本題考查不等式的綜合運用,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知x,y,z∈R,x2+y2+z2=1,則x+2y+2z的最大值為
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2)
x+y
2
xy
;(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]在下面A,B,C,D四個小題中只能選做兩題,每小題10分,共20分.
A.選修4-1:幾何證明選講
如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F,判斷BE是否平分∠ABC,并說明理由.
B.選修4-2:短陣與變換
已知矩陣M=
1
2
0
02
,矩陣M對應(yīng)的變換把曲線y=sinx變?yōu)榍C,求C的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是ρ=4sin(θ+
π
4
)
,求曲線C的普通方程.
D.選修4-5:不等式選講
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)一模)已知x,y,z∈R,若-1,x,y,z,-3成等差數(shù)列,則x+y+z的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z∈R,且x+y+z=1,x2+y2+z2=
1
2
,證明:x,y,z∈[0,
2
3
].

查看答案和解析>>

同步練習(xí)冊答案