精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若,求的值;
(2)求的值.

(1)1;(2)1006

解析試題分析:(1)因為.所以可以計算出的值為1,即表示兩個自變量的和為1的函數值的和為1.
(2)由(1)可知兩個自變量的和為1的函數值的和為1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.
試題解析:
.        5分
(2).      10分
考點:1.函數的表示法.2.倒序求和法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=,x∈[1,+∞).
(1)當a=時,求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且對任意實數x均有f(x)≥0成立.
(1)求F(x)的表達式;
(2)當x∈[-2,2]時,g(x)=f(x)-kx是單調函數,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數上是減函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在上的函數同時滿足以下條件:
在(0,1)上是減函數,在(1,+∞)上是增函數;
是偶函數;
在x=0處的切線與直線y=x+2垂直.
(1)求函數的解析式;
(2)設g(x)=,若存在實數x∈[1,e],使<,求實數m的取值范圍..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)在如圖給定的直角坐標系內畫出的圖象;

(2)寫出的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若函數為偶函數,求的值;
(Ⅱ)若,求函數的單調遞增區(qū)間;
(Ⅲ)當時,若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數,求實數a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數

(1)請在所給的平面直角坐標系中畫出函數的圖像;
(2)根據函數的圖像回答下列問題:
①求函數的單調區(qū)間;
②求函數的值域;
③求關于的方程在區(qū)間上解的個數.
(回答上述3個小題都只需直接寫出結果,不需給出演算步驟)

查看答案和解析>>

同步練習冊答案