【題目】如圖:在五面體中,四邊形是正方形, ,
(1)證明:為直角三角形;
(2)已知四邊形是等腰梯形,且,,求五面體的體積.
【答案】(1)詳見解析;(2).
【解析】分析:(1)先利用線面垂直的判定定理字母線面垂直,進(jìn)而得到線線垂直,再利用線線平行的性質(zhì)進(jìn)行證明;(2)將該幾何體的體積轉(zhuǎn)化為一個(gè)四棱錐和一個(gè)三棱錐的體積之和,再利用垂直關(guān)系確定幾何體的高線,利用體積公式進(jìn)行求解.
詳解:(1)證明:由已知得,,平面,且,
所以平面.
又平面,所以.
又因?yàn)?/span>,所以,即為直角三角形.
(2)解:連結(jié),,.
過作交于,又因?yàn)?/span>平面,所以,
且,所以平面,則是四棱錐的高.
因?yàn)樗倪呅?/span>是底角為的等腰梯形,,
所以,,.
因?yàn)?/span>平面,,所以平面,則是三棱錐的高.
.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:()與拋物線:的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn).
(Ⅰ)求橢圓及拋物線的方程;
(Ⅱ)設(shè)過且互相垂直的兩動(dòng)直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)證明:函數(shù)在區(qū)間存在唯一的極小值點(diǎn),且;
(2)證明:函數(shù)于有且僅有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,且橢圓的短軸長為2.
(1)球橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線過右焦點(diǎn),且它們的斜率乘積為,設(shè)分別與橢圓交于點(diǎn)和.
①求的值;
②設(shè)的中點(diǎn),的中點(diǎn)為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一種魚的身體吸收汞,一定量身體中汞的含量超過其體重的1.00ppm(即百萬分之一)的魚被人食用后,就會(huì)對(duì)人體產(chǎn)生危害.在30條魚的樣本中發(fā)現(xiàn)的汞含量(單位:ppm)如下:
0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02
1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68
1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31
(1)請(qǐng)用合適的統(tǒng)計(jì)圖描述上述數(shù)據(jù),并分析這30條魚的汞含量的分布特點(diǎn);
(2)求出上述樣本數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差;
(3)從實(shí)際情況看,許多魚的汞含量超標(biāo)的原因是這些魚在出售之前沒有被檢測過你認(rèn)為每批這種魚的平均承含量都比1.00ppm大嗎?
(4)在上述樣本中,有多少條魚的汞含量在以平均數(shù)為中心、2倍標(biāo)準(zhǔn)差的范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com