經(jīng)過兩圓x2+y2=9和(x+4)2+(y+3)2=8交點(diǎn)的直線方程為
4x+3y+13=0
4x+3y+13=0
分析:關(guān)于兩圓相交,求公共弦所在直線的方程問題,可以用兩圓的一般方程左、右兩邊對應(yīng)相減,得到二元一次方程,即為所求.因此將兩圓x2+y2=9和(x+4)2+(y+3)2=8相減,化簡整理可得經(jīng)過它們交點(diǎn)的直線方程.
解答:解:設(shè)兩圓x2+y2=9和(x+4)2+(y+3)2=8交點(diǎn)分別為A、B
則線段AB是兩個(gè)圓的公共弦,
x2 +y2=9
(x+4)2+(y+3)2=8
相減,得8x+6y+26=0
即4x+3y+13=0,
∴線段AB所在直線的方程為4x+3y+13=0,
故答案為:4x+3y+13=0
點(diǎn)評:本題借助于兩個(gè)圓相交,求公共弦所在直線方程的問題,著重考查了圓與圓的位置關(guān)系和直線方程等知識點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線x-y-4=0上,且經(jīng)過兩圓x2+y2-4x-3=0,x2+y2-4y-3=0的交點(diǎn)的圓的方程為( 。
A、x2+y2-6x+2y-3=0B、x2+y2+6x+2y-3=0C、x2+y2-6x-2y-3=0D、x2+y2+6x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩圓x2+y2+6x-4=0和x2+y2+6y-28=0的交點(diǎn)的直線方程是
x-y+4=0
x-y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩圓x2+y2-2x-3=0與x2+y2-4x+2y+3=0的交點(diǎn),且圓心在直線2x-y=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線x-y-4=0上,并且經(jīng)過兩圓x2+y2-4x-3=0和x2+y2-4y-3=0的交點(diǎn),則圓C的方程為
 

查看答案和解析>>

同步練習(xí)冊答案