【題目】如圖所示,在三棱錐中,與都是邊長為2的等邊三角形,是側(cè)棱的中點,過點作平行于、的平面分別交棱、、于點、、.
(1)證明:四邊形為矩形;
(2)若平面平面,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)設(shè)的中點為,連接,,由線面平行的性質(zhì)定理,分別證得和,得到四邊形為平行四邊形,再由線面垂直的性質(zhì)定理,證得,即可得到答案。
(2)以為原點建立如圖的空間直角坐標系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解。
(1)如圖,設(shè)的中點為,連接,,
∵平面,平面平面,平面平面,
∴,,∴.
同理,由平面得,∴四邊形為平行四邊形.
∵與都是等邊三角形,∴,,
又,∴平面,故,
又由上知,,∴,∴四邊形為矩形.
(2)∵平面平面,平面平面,,平面,∴平面,∴,,兩兩垂直,
以為原點建立如圖的空間直角坐標系,
∵與都是邊長為2的等邊三角形,
∴,,,,
∴,,,
設(shè)平面的法向量為,
由,令,得.
同理可得平面的法向量,
∴ .
由圖形可知,所求二面角的平面角為銳角,∴二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為().點在上,,△的周長為,面積為.
(1)求的方程;
(2)過的直線與交于兩點,以為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學成績的中位數(shù),并將同學乙的成績的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學數(shù)學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請計算出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的鍥體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 12000立方尺B. 11000立方尺
C. 10000立方尺D. 9000立方尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距等于,短軸與長軸的長度比等于.
(1)求橢圓的方程;
(2)設(shè)點在橢圓上,過作兩直線,分別交橢圓于另外兩點,當的傾斜角互為補角時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對某校學生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:
同意 | 不同意 | 合計 | |
男生 | a | 5 | |
女生 | 40 | d | |
合計 | 100 |
(1)求 a,d 的值;
(2)根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關(guān)?請說明理由;
附:
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名大學生因為學習需要,欲各自選購一臺筆記本電腦,他們決定在A,B,C三個品牌的五款產(chǎn)品中選擇,這五款筆記本電腦在某電商平臺的價格與銷量數(shù)據(jù)如表所示:
品牌 | A | B | C | ||
型號 | A﹣1 | A﹣2 | B﹣1 | B﹣2 | C﹣1 |
價格(元) | 6000 | 7500 | 10000 | 8000 | 4500 |
銷量(臺) | 1000 | 1000 | 200 | 800 | 3000 |
(Ⅰ)若甲選擇某品牌的筆記本電腦的概率與該品牌的總銷量成正比,求他選擇B品牌的筆記本電腦的概率;
(Ⅱ)若甲、乙兩人選擇每種型號的筆記本電腦的概率都相等,且兩人選購的型號不相同,求他們兩人購買的筆記本電腦的價格之和大于15000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二理科8班共有50名學生參加學業(yè)水平模擬考試,成績(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語文成績近似服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如圖.
(I)這50名學生中本次考試語文、數(shù)學成績優(yōu)秀的大約各有多少人?
(Ⅱ)如果語文和數(shù)學兩科成績都優(yōu)秀的共有4人,從語文優(yōu)秀或數(shù)學優(yōu)秀的這些同學中隨機抽取3人,設(shè)3人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學期望;
(Ⅲ)根據(jù)(I)(Ⅱ)的數(shù)據(jù),是否有99%以上的把握認為語文成績優(yōu)秀的同學,數(shù)學成績也優(yōu)秀?
附:①若~,則,;
②;
③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com