【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對某種商品的周銷售量(單位:噸)進行統(tǒng)計,最近100周的統(tǒng)計結(jié)果如下表所示:
周銷售量 | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
(1)根據(jù)上面統(tǒng)計結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤為2千元,ξ表示該種商品兩周銷售利潤的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨立,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個平放的各棱長均為 4 的三棱錐內(nèi)有一個小球,現(xiàn)從該三棱錐頂端向錐內(nèi)注水,小球慢慢上浮.當注入的水的體積是該三棱錐體積的 時,小球恰與該三棱錐各側(cè)面及水面相切(小球完全浮在水面上方),則小球的表面積等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線E:x2=4y的焦點F是橢圓 (a>b>0)的一個頂點.過點F且斜率為k(k≠0)的直線l交橢圓C于另一點D,交拋物線E于A、B兩點,線段DF的中點為M,直線OM交橢圓C于P、Q兩點,記直線OM的斜率為k',滿足 .
(1)求橢圓C的方程;
(2)記△PDF的面積為S1 , △QAB的面積為S2 , 設 ,求實數(shù)λ的最大值及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}滿足cn= ,數(shù)列{cn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N* , 求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,它們所在平面互相垂直,F(xiàn)D⊥平面ABCD,且FD= .
(I)求證:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f(x)=1+x﹣ ,g (x)=1﹣x+ ,設函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b﹣a 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2 ,離心率為 ,點F為其在y軸正半軸上的焦點. (Ⅰ)求橢圓C的方程;
(Ⅱ)若一動圓過點F,且與直線y=﹣1相切,求動圓圓心軌跡C1的方程;
(Ⅲ)過F作互相垂直的兩條直線l1 , l2 , 其中l(wèi)1交曲線C1于M、N兩點,l2交橢圓C于P、Q兩點,求四邊形PMQN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,點D是邊BC上的動點,且| |=3,| |=4, =λ +μ (λ>0,μ>0),則當λμ取得最大值時,| |的值為( )
A.
B.3
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com