【題目】設(shè)是平面內(nèi)互不平行的三個(gè)向量,,有下列命題:①方程不可能有兩個(gè)不同的實(shí)數(shù)解;②方程有實(shí)數(shù)解的充要條件是;③方程有唯一的實(shí)數(shù)解;④方程沒(méi)有實(shí)數(shù)解,其中真命題有_______________.(寫(xiě)出所有真命題的序號(hào))
【答案】①④
【解析】
利用共面向量定理以及共線(xiàn)向量的性質(zhì)一一判斷即可得出答案.
因?yàn)?/span>是平面內(nèi)互不平行的三個(gè)向量,,則由共面向量定理可得:共面時(shí),有且僅有一對(duì)有序?qū)崝?shù)對(duì)使得成立;則由①可化簡(jiǎn)為,且共面可得有序?qū)崝?shù)對(duì)有唯一解,即方程有唯一實(shí)數(shù)解,則①方程不可能有兩個(gè)不同的實(shí)數(shù)解正確;由①的分析可得方程有唯一實(shí)數(shù)解,則②的說(shuō)法方程有實(shí)數(shù)解的充要條件是不正確;化簡(jiǎn)可得,則即得,因?yàn)橄蛄?/span>不共線(xiàn),所以無(wú)實(shí)數(shù)解,即方程無(wú)實(shí)數(shù)解,所以③不正確,④正確.
綜上可得:①④正確.
故答案為:①④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮等差數(shù)列的各項(xiàng)均為整數(shù),首項(xiàng)為,公差為,是其前項(xiàng)和,31521是其中的三項(xiàng) ,給出下列命題:
①對(duì)任意滿(mǎn)足條件的,存在,使得99一定是數(shù)列中的一項(xiàng);
②對(duì)任意滿(mǎn)足條件的,存在,使得30一定是數(shù)列中的一項(xiàng);
③存在滿(mǎn)足條件的數(shù)列,使得對(duì)任意的,成立;
其中正確命題的序號(hào)為( ).
A.①B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(6選3),每科目滿(mǎn)分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.
(1)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶(hù),根據(jù)用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分,得到地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖和地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表.
地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖如下:
地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表如下:
(1)在圖中作出地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿(mǎn)意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可).
地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖
(2)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度分為三個(gè)等級(jí):
公司負(fù)責(zé)人為了解用戶(hù)滿(mǎn)意度情況,從B地區(qū)調(diào)查8戶(hù),其中有兩戶(hù)滿(mǎn)意度等級(jí)是不滿(mǎn)意.求從這8戶(hù)中隨機(jī)抽取2戶(hù)檢查,抽到不滿(mǎn)意用戶(hù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)向量組,令,如果存在,使得,那么稱(chēng)是該向量組的“長(zhǎng)向量”
(1)若是向量組的“長(zhǎng)向量”,且,求實(shí)數(shù)的取值范圍;
(2)已知,,均是向量組的“長(zhǎng)向量”,試探究,,的等量關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是線(xiàn)段DE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使BE∥平面MAC,并說(shuō)明理由;
(2)在(1)的條件下,四面體E-MAC的體積為3,求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】語(yǔ)文中回文句,如:“黃山落葉松葉落山黃,西湖垂柳絲柳垂湖西.”,倒過(guò)來(lái)讀完全一樣,數(shù)學(xué)中也有類(lèi)似現(xiàn)象,無(wú)論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱(chēng)這樣的數(shù)為“回文數(shù)”!二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個(gè);三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個(gè);四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,999,共90個(gè);五位的回文數(shù)有10001,11111,12221,…,96669,97779,98889,99999共900個(gè),由此推測(cè):10位的回文數(shù)總共有_______個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線(xiàn)過(guò)點(diǎn)且在兩坐標(biāo)軸上截距之和等于,求直線(xiàn)的方程;
(2)設(shè)是圓上的動(dòng)點(diǎn),求(為坐標(biāo)原點(diǎn))的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】排一張5個(gè)獨(dú)唱和3個(gè)合唱的節(jié)目單,如果合唱不排兩頭,且任何兩個(gè)合唱不相鄰,則這種事件發(fā)生的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com