為了得到函數(shù)y=2sin(x∈R)的圖象,只需把函數(shù)y=2sinx(x∈R)的圖象上所有的點(diǎn)經(jīng)過(guò)怎樣的變換得到?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[,]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(θ)=sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2·sincos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期為.
(1)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2sin.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f=-,求f(x0)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn)P(-3,).
(1)求sin 2α-tan α的值;
(2)若函數(shù)f(x)=cos(x-α)cos α-sin(x-α)sin α,求函數(shù)y=f-2f2(x)在區(qū)間上的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com