解答題:解答應寫出文字說明,證明過程或演算步驟.

設數(shù)列{an}是首項為6,公差為1的等差數(shù)列;Sn為數(shù)列{bn}的前n項和,且Sn=n2+2n

(1)

求{an}及{bn}的通項公式anbn

(2)

,問是否存在k∈N+使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,說明理由

(3)

若對任意的正整數(shù)n,不等式恒成立,求正數(shù)a的取值范圍.

答案:
解析:

(1)

          1分

又當時,

時,

上式對也成立,

,總之,       4分

(2)

由已知∴當為奇數(shù)時,為偶數(shù),

,得

(舍去)                   6分

為偶數(shù)時,為奇數(shù),

,得,

,∴適合題意.

總之,存在整數(shù),使結論成立            8分

(3)

將不等式變形并把代入得:

又∵

,即

的增大而增大,,

                14分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數(shù)列{an}的前3項

(1)求此數(shù)列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若x,y,z∈R,ab,c∈R+,則z2≥2(xyyzzx)

(理)若xy,z∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內有兩個實根.

(文)設x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBCAB=2,ADBC.橢圓CA、B為焦點且經(jīng)過點D

(1)建立適當坐標系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于MN兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于MN兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案