【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如右表:(單位:人)
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
附表及公式
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時(shí)間在5~7分鐘,乙每次解答一道幾何題所用的時(shí)間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望 EX.
【答案】
(1)解:由表中數(shù)據(jù)得K2的觀測值 ,
所以根據(jù)統(tǒng)計(jì)有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)
(2)解:設(shè)甲、乙解答一道幾何題的時(shí)間分別為x、y分鐘,則基本事件滿足的區(qū)域?yàn)? (如圖所示)
設(shè)事件A為“乙比甲先做完此道題”則滿足的區(qū)域?yàn)閤>y,
∴由幾何概型 即乙比甲先解答完的概率為
(3)解:由題可知在選擇做幾何題的8名女生中任意抽取兩人,抽取方法有 種,其中甲、乙兩人沒有一個(gè)人被抽到有 種;恰有一人被抽到有 種;兩人都被抽到有 種,
∴X可能取值為0,1,2, , ,
X的分布列為:
X | 0 | 1 | 2 |
P |
∴
【解析】(1)根據(jù)所給的列聯(lián)表得到求觀測值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測值公式中,做出觀測值,同所給的臨界值表進(jìn)行比較,得到所求的值所處的位置,得到結(jié)論;(2)利用面積比,求出乙比甲先解答完的概率;(3)確定X的可能值有0,1,2.依次求出相應(yīng)的概率求分布列,再求期望即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是R上的偶函數(shù),在(﹣3,﹣2)上為減函數(shù)且對x∈R都有f(2﹣x)=f(x),若A,B是鈍角三角形ABC的兩個(gè)銳角,則( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)與與f(cosB)的大小關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過原點(diǎn),且它的傾斜角α= ,求l與圓E的交點(diǎn)A的極坐標(biāo)(點(diǎn)A不是坐標(biāo)原點(diǎn));
(2)直線m過線段OA中點(diǎn)M,且直線m交圓E于B、C兩點(diǎn),求||MB|﹣|MC||的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點(diǎn)在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)居民生活用電分為高峰和低谷兩個(gè)時(shí)間段進(jìn)行分時(shí)計(jì)價(jià).該地區(qū)的電網(wǎng)銷售電價(jià)表如下:
高峰時(shí)間段用電價(jià)格表 | 低谷時(shí)間段用電價(jià)格表 | ||
高峰月用 電量(單 位:千瓦時(shí)) | 高峰電價(jià) (單位:元/ 千瓦時(shí)) | 低谷月用 電量(單位: 千瓦時(shí)) | 低谷電價(jià) (單位:元/ 千瓦時(shí)) |
50及以下 的部分 | 0.568 | 50及以下 的部分 | 0.288 |
超過 50 至 200 的部分 | 0.598 | 超過 50 至 200 的部分 | 0.318 |
超過200 的部分 | 0.668 | 超過 200 的部分 | 0.388 |
若某家庭5月份的高峰時(shí)間段用電量為 200 千瓦時(shí),低谷時(shí)間段用電量為 100 千瓦時(shí),則按這種計(jì)費(fèi)方式該家庭本月應(yīng)付的電費(fèi)為____________元.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并給出證明;
(3)若x∈時(shí),函數(shù)f(x)的值域是[0,1],求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污 水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為f(m)=25m0.7(萬元),m表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi)) (萬元),x表示輸送污水管道的長度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請解答下列問題(結(jié)果精確到0.1)
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費(fèi)用y與x的函數(shù)關(guān)系 式,并求y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com