(1)已知兩個(gè)等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個(gè)等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項(xiàng)公式;若不存在,說(shuō)明理由.
(1) a= (2) 不存在,理由見解析
解析解:(1)設(shè)等比數(shù)列{an}的公比為q,
則b1=1+a,b2=2+aq,b3=3+aq2,
由b1,b2,b3成等比數(shù)列,得(2+aq)2=(1+a)(3+aq2),
即aq2-4aq+3a-1=0,(*)
由a>0得Δ=4a2+4a>0,故方程(*)有兩個(gè)不同的實(shí)數(shù)根,
再由{an}唯一,知方程(*)必有一根為0,將q=0代入方程(*)得a=.
(2)假設(shè)存在兩個(gè)等比數(shù)列{an},{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列,設(shè)等比數(shù)列{an}的公比為q1,等比數(shù)列{bn}的公比為q2,
則b2-a2=b1q2-a1q1,
b3-a3=b1-a1,
b4-a4=b1-a1,
∵b1-a1,b2-a2,b3-a3,b4-a4成等差數(shù)列,得
即
即
①×q2-②得a1(q1-q2)(q1-1) 2=0,
由a1≠0得q1=q2或q1=1.
(ⅰ)當(dāng)q1=q2時(shí)由①②得b1=a1或q1=q2=1,
這時(shí)(b2-a2)-(b1-a1)=0與公差不為0矛盾.
(ⅱ)當(dāng)q1=1時(shí),由①②得b1=0或q2=1,
這時(shí)(b2-a2)-(b1-a1)=0與公差不為0矛盾.
綜上所述,不存在兩個(gè)等比數(shù)列{an}{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
我國(guó)是一個(gè)人口大國(guó),隨著時(shí)間推移,老齡化現(xiàn)象越來(lái)越嚴(yán)重,為緩解社會(huì)和家庭壓力,決定采用養(yǎng)老儲(chǔ)備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲(chǔ)備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲(chǔ)備金數(shù)目a1,a2,…,an是一個(gè)公差為d的等差數(shù)列.與此同時(shí),國(guó)家給予優(yōu)惠的計(jì)息政策,不僅采用固定利率,而且計(jì)算復(fù)利.這就是說(shuō),如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲(chǔ)備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲(chǔ)備金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年所累計(jì)的儲(chǔ)備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個(gè)等比數(shù)列,{Bn}是一個(gè)等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn≤¨對(duì)恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知{an}是首項(xiàng)為-2的等比數(shù)列,Sn是其前n項(xiàng)和,且S3,S2,S4成等差數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若bn=log2|an|,求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是等差數(shù)列,首項(xiàng),前項(xiàng)和為.令,的前項(xiàng)和.數(shù)列是公比為的等比數(shù)列,前項(xiàng)和為,且,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}和等比數(shù)列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求數(shù)列{bn}及{an}的通項(xiàng)公式;
(2)若cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等差數(shù)列和等比數(shù)列中,,,是前項(xiàng)和.
(1)若,求實(shí)數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說(shuō)明理由;
(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com