雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.

解:(Ⅰ)設雙曲線方程為

不妨設l1:bx-ay=0,l2:bx+ay=0,

所以

(Ⅱ)由a=2b知,雙曲線的方程可化為

x2-4y2=4b2.①

l1的斜率為知,直線AB的方程為

Y=-2(x-).②

將②代入①并化簡,得

設AB與雙曲線的兩交點的坐標分別為(x1,y1),(x2,y2),則

AB被雙曲線所截得的線段長

將③代入④,并化簡得,而由已知l=4,故b=3,a=6.

所以雙曲線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線的中心為原點O,焦點在x軸上,兩條漸近線分別為l1,l2,經過右焦點F垂直于l1的直線分別交l1,l2于A,B兩點.已知|
OA
|、|
AB
|、|
OB
|成等差數(shù)列,且
BF
FA
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設AB被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的中心為原點O,焦點在x軸上,兩條漸近線分別為l1,l2,經過右焦點F垂直l1的直線分別交l1,l2于A,B兩點,己知|
OA
|,|
AB
|,|
OB
|
成等差數(shù)列,且
BF
FA
同向,則雙曲線的離心率
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•梅州一模)已知有公共焦點的橢圓與雙曲線的中心為原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2且它們在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心為原點,F(xiàn)(3,0)是雙曲線的-個焦點,
5
x-2y=0
是雙曲線的一條漸近線,則雙曲線的標準方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心為原點,的焦點,過F的直線相交于A,B兩點,且AB的中點為,則的方程式為

(A)   (B)           (C)          (D)

查看答案和解析>>

同步練習冊答案