【題目】已知定點(diǎn),定直線,動點(diǎn)到點(diǎn)的距離與到直線的距離之比等于.

(1)求動點(diǎn)的軌跡的方程;

(2)設(shè)軌跡軸負(fù)半軸交于點(diǎn),過點(diǎn)作不與軸重合的直線交軌跡于兩點(diǎn),直線分別交直線于點(diǎn).試問:在軸上是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1) ;(2)在軸上存在定點(diǎn),使得.

【解析】試題分析:

(1)設(shè)出點(diǎn)的坐標(biāo),結(jié)合題意可得動點(diǎn)的軌跡的方程是;

(2)設(shè)出直線方程,聯(lián)立直線與橢圓的方程,討論可得在軸上存在定點(diǎn),使得.

試題解析:

(1)設(shè)點(diǎn),依題意有,化簡整理,得,即為動點(diǎn)的軌跡的方程.

(2)根據(jù)題意可設(shè)直線的方程為,代入,整理得,設(shè),則, .又易知,所以直線的方程為: ,直線的方程為: ,從而得, ,所以 .所以當(dāng),即

時, ,故在軸上存在定點(diǎn),使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),1和x0是函數(shù)f(x)的兩個不同零點(diǎn),且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(﹣x)+f(x)=0,f(x+4)=f(x)滿足,且x∈(﹣2,0)時,f(x)=2x+ ,則f(log220)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,臺風(fēng)中心從A地以每小時20千米的速度向東北方向(北偏東)移動,離臺風(fēng)中心不超過300千米的地區(qū)為危險(xiǎn)區(qū)域.城市B在A地的正東400千米處.請建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,解決以下問題:

(1) 求臺風(fēng)移動路徑所在的直線方程;

(2)求城市B處于危險(xiǎn)區(qū)域的時間是多少小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時,f(x)是單調(diào)函數(shù),則滿足f(x)=f( )的所有x之和為(
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求的最大值;

(Ⅱ)若對恒成立,求的取值范圍;

(Ⅲ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動點(diǎn)B、C分別在 、 上,且BC= ,則過A、B、C三點(diǎn)圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;
(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.

查看答案和解析>>

同步練習(xí)冊答案